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Introduction

Live Z-Score neurofeedback training 

(LZT) has been in practice for close to 

10 years, and has evolved considerably 

in that time (Collura et al, 2007; Collura, 

2013). There is now a proliferation of 

methods that incorporate live Z-Scores 

for neurofeedback as well as for other 

purposes. One of the cornerstones of 

LZT is that there must be some refer-

ence as part of the system, which pro-

vides the basis for computing the live 

z-scores that are incorporated into the 

feedback process. As the !eld evolves, 

it is appropriate to ask what constitutes 

a useful reference for Live Z-Scores, and 

how a reference may be chosen or de-

veloped, with various priorities and 

concerns in mind. It will be shown here 

that there is a wide range of possible 

choices for LZT references, and that the 

!eld has only begun to explore how to 

develop and use references.

This article will discuss the choice 

of references for LZT training, as well as 

considerations with regard to the de-

velopment of such references. For the 

purposes of qEEG assessment, it is gen-

erally accepted that references should 

be based upon a representative popu-

lation of individuals, so that results put 

the client in the context of a particular 

group. While a normative sample is 

clearly important for qEEG assessment, 

when a reference database is to be used 

for LZT training, it is not clear that one 

can assume that a population of “nor-

mal” individuals constitutes an ideal ref-

erence. When working with individuals, 

it is more likely that the reference needs 

to re"ect the individual pro!le of the cli-

ent, as well as the particular goals of the 

intervention.

All LZT training takes advantage of 

the same fundamental equation:

Thomas F. Collura, PhD, QEEG D, BCN, LPC
Live Z Score neurofeedback training (LZT) has been in practice for close to 10 years, and has evolvedconsiderably in that time (Collura et al, 2007; Collura, 2013). There is now a proliferation of methodsthat incorporate live Z Scores for neurofeedback as well as for other purposes. One of the cornerstonesof LZT is that there must be some reference as part of the system, which provides the basis forcomputing the live z scores that are incorporated into the feedback process. As the field evolves, it isappropriate to ask what constitutes a useful reference for Live Z Scores, and how a reference may bechosen or developed, with various priorities and concerns in mind. It will be shown here that there is awide range of possible choices for LZT references, and that the field has only begun to explore how todevelop and use references.
This article will discuss the choice of references for LZT training, as well as considerations with regard tothe development of such references. For the purposes of qEEG assessment, it is generally accepted thatreferences should be based upon a representative population of individuals, so that results put theclient in the context of a particular group. While a normative sample is clearly important for qEEGassessment, when a reference database is to be used for LZT training, it is not clear that one can assumethat a population of individuals constitutes an ideal reference. When working with individuals,it is more likely that the reference needs to reflect the individual profile of the client, as well as theparticular goals of the intervention.
All LZT training takes advantage of the same fundamental equation:

 

!"
#

xz �

Or�in�more�recognizable�terms,�
stdev meantmeasuremenzscore "

#
�

�Where z is the resulting z score, x or is the current sample value, or is thereference mean value and or is the standard deviation value in the referencetable. So the z score is no more complex than a number that tells you how far a measurement is fromsome target, in terms of the normal distribution. Although it is often assumed that the mean andstandard deviation should represent a or population, this is not necessary in thedefinition of a z score. These reference values might represent some orvalues, but they might just as well represent some ideal, an individual, or someone in any particularstate of self regulation or dysregulation. The key point is that a reference for LZT neurofeedback consistsultimately of a set of means and standard deviations, and there is more than one way to arrive at valuesthat will be valid, useful, and effective.
LZT training is accomplished in real time by computing instantaneous metrics, and then comparing themwith some reference values and standard deviations. The simple choice of these two numberscompletely determines the resulting z scores. Generally, it is assumed that the reference mean andstandard deviation are derived from some appropriate statistically representative sample. This is true,and is a requisite condition for the computation to have validity with respect to the intended sample.However, what constitutes a representative sample is open to interpretation. A statistical average and

This would make a goodpull quote.

Where z is the resulting z-score, x 

or “measurement” is the current sample 

value, “mu” or “mean” is the reference 

mean value (“target”) and “sigma” or 

“stdev” is the standard deviation value 

in the reference table. So the z-score is 

no more complex than a number that 

tells you how far a measurement is 

from some target, in terms of the nor-

mal distribution. Although it is often 

assumed that the mean and standard 

deviation should represent a “normal” 

or “typical” population, this is not nec-

essary in the de!nition of a z-score. 

These reference values might repre-

sent some “normal,” “typical,” or “desir-

able” values, but they might just as well 

represent some ideal, an individual, or 

someone in any particular state of self-

regulation or dysregulation. The key 

point is that a reference for LZT neu-

rofeedback consists ultimately of a set 

of means and standard deviations, and 

there is more than one way to arrive at 

values that will be valid, useful, and ef-

fective.

LZT training is accomplished in 

real time by computing instantaneous 

metrics, and then comparing them with 

some reference values and standard de-

viations. The simple choice of these two 

numbers completely determines the re-

sulting z-scores. Generally, it is assumed 

that the reference mean and standard 

deviation are derived from some appro-

priate statistically representative sam-

ple. This is true, and is a requisite condi-

tion for the computation to have valid-

ity with respect to the intended sample. 

However, what constitutes a represen-

tative sample is open to interpretation. 

A statistical average and standard de-

viation from n individuals from a well-

controlled sample is one way to derive 

a reference, and has until recently been 

the primary reference used not only for 

LZT but also for qEEG in general. How-

ever, as we shall see, a set of values from 

a chosen sample, or even from a single 

individual is also a valid source of ref-

erence data, and other methods, such 

as synthesizing values, or constructing 

references for speci!c purposes, is also 

possible.

Specifying and Developing References for  
Live Z-Score Neurofeedback

Thomas F. Collura, PhD, QEEG-D, BCN, LPC

There is more than one way to arrive at values that will be valid,  

useful, and e!ective.
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Incorporating LZT References in 

biofeedback

The following block diagram shows the 

software design of a general-purpose 

Live Z-Score training system (!gure 1). 

It provides several options for the selec-

tion (or development) of LZT references, 

as well as "exible feedback capability 

providing visual, auditory, vibrotactile, 

or electromagnetic feedback. Input 

data can include, in addition to z-scored 

values, convention qEEG metrics, Infra-

Slow Fluctuations (ISF), and peripheral 

biofeedback modalities. One emphasis 

is to provide various options that can be 

combined or customized, rather than 

dictating a single, monolithic approach 

to LZT neurofeedback.

When the LZT method emerged, 

the reference chosen was the Lifespan 

database, which is comprised of 725 in-

dividuals meeting speci!c acceptance 

and rejection criteria, and derived ac-

cording to well documented principles 

(Thatcher). It includes eyes-open (EO) 

and eyes-closed (EC) conditions, which 

must be selected by the user, along 

with specifying age, when initializing 

the software. Therefore, each client re-

ceives feedback that indicates how well 

that client’s EEG matches, in certain 

ways, the EEG of a population of se-

lected individuals who were sitting still, 

being monitored in accordance with 

the Lifespan protocol. Subjects were 

not performing any particular task, and 

they were not selected with any goal in 

mind other than representing a popula-

tion of symptom-free individuals who 

were not diagnosed with any mental or 

emotional disorders.

More recently, the BrainDX data-

base reference has been added (John et 

al.) as an option for mini-assessments, 

and for neurofeedback training. This 

latter reference consists of static data 

acquired, also at rest, and re"ecting the 

population data when averaged over 

a minimum 2-minute epoch. As will 

be described below, the target values 

(means) for both references are theo-

retically, and in practice, the same, and 

the only di#erence in principle is in the 

variation of the data. This di#erence, 

which has long been recognized as a 

scale factor of approximately 2X, is eas-

ily compensated for in practical training 

and assessment, by accounting for the 

simple fact that the observed z-scores 

will be larger when using the static da-

tabase reference.

One of the early concerns that was 

raised with the emergence of LZT was 

the appropriateness of the reference. 

It was suggested that by using a popu-

lation average of typical individuals, 

particularly individuals who were not 

under any task, was not an appropriate 

reference. It was argued that the refer-

ence EEG might not well represent the 

EEG that would be desirable for any par-

ticular client at any particular time. An 

additional concern was that individuals 

may or may not have EEG characteris-

tics that were not typical, but that were 

appropriate for them. The idea of indi-

vidualized references, as well as “opti-

mal functioning” or “peak performance” 

references was elevated early on, and 

remained in the background as a con-

cern as LZT continued to develop and 

proliferate.

What is “normal?”

Because the typical “normal” reference is 

based upon a population statistic, cer-

tain observations may be made at the 

outset. The !rst is that this reference EEG 

does not in fact represent any particular 

functioning brain. In fact, there may be 

no brain that meets these conditions at 

all. As an example, if we were to com-

pute the typical “normal” man in terms 

of height, weight, body proportions and 

muscle and fat proportions, hair color, 

blood chemistry, and so on, we would 

have a portrait of an average man.

However, not only does no such in-

dividual necessarily (or likely) exist, but 

also there is no a priori reason to expect 

that someone would bene!t by be-

coming more “typical.” Surely, normal-

izing critical levels such as excess blood 

sugar, hypertension, or obesity, would 

be expected to be of general bene!t. 

However, if an individual has a personal 

pro!le that puts their optimal function-

ing at some other level, then the nor-

mative comparison cannot take this 

into account. To put this in perspective, 

one might ask, how often a practitioner 

tells a client “your problem is that you 

are not more average.”

In relation to EEG z-scores, or for 

Figure 1:  Software design of a general-purpose Live Z-Score training system.
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any biologically-related metric, we can 

ask the question, do we really expect 

everyone’s brain to be the same, such as 

these dancers all lined up in a row?

Or is this not a more realistic scenar-

io, with individuals expressing their own 

individual characteristics, strengths, 

and weaknesses?

It is clear, intuitively and practically, 

and has been borne out by research and 

clinical experience, that not everyone 

who is asymptomatic and with an un-

remarkable medical history (“normal”) 

has the same EEG pattern (Johnstone et 

al). Even normal individuals, including 

those in the database, reveal particu-

lar patterns that re"ect personal style, 

strengths, and weaknesses, but do not 

necessarily imply pathology. That is the 

reason that the z-scores have their par-

ticular standard deviations. The values 

vary within the sample population, and 

a certain percentage are, by necessity, 

not near the center of the distribution. 

It is a necessary fact that, for example, 

40% of the population will be outside 

the plus or minus one standard devia-

tion limits, for any arbitrary metric. That 

is how the metrics are constructed. It 

also means that 1 in 20 readings will, 

statistically, be expected to be at or be-

yond two standard deviations. Given 

that an individual may be character-

ized by thousands of di#erent z-scores, 

we must necessarily expect deviant z-

scores, even among normal individuals. 

Furthermore, there is no particular rea-

son that anyone is any better o# if they

are near the centers of the distribution. 

In particular, it is not necessarily true 

that anyone with a z-score of two on 

any metric will necessarily be any better 

o# if that parameter moved toward the 

center of the population mean.

As a theoretical ideal, the best and 

only “pure” reference for a given indi-

vidual during a neurofeedback task 

would be the EEG of that individual, in a 

more desirable state. Whether that cor-

responds to characteristics of a popula-

tion average is not a presumptive fact. 

The concept of normative qEEG was 

introduced independent of the idea of 

live training to z-score norms. It is not 

at all clear that the normative average 

sample is the only, or even an optimal, 

target for operant learning. However, 

this view may be taken a priori based 

upon a mechanistic, interventional 

model that subscribes to the idea that 

all brains should be the same.

As a more speci!c example of a limi-

tation of normative database reference is 

that a certain percentage of individuals 

will, by de!nition, be on a deviant part of 

a distribution. However, since all entrants 

into the database are purportedly “nor-

mal,” a given percentage of the popula-

tion will necessarily be signi!cantly devi-

ant. For example, the following !gures 

show the EEG of an asymptomatic, high-

performing individual who happens to 

have a fast posterior dominant rhythm 

(PDR). Based on a visual inspection, it is 

clear that this individual simply has an 

alpha peak frequency at or near 12.0 Hz, 

which is at the high end of the “normal” 

distribution. By de!nition, some per-

centage of the normal population will 

present with this !nding.

Two !ndings are evident from this 

analysis; one is that because the EEG 

alpha frequency is signi!cantly fast, yet 

normal for this individual, the z-score 

computations produce misleading re-

sults. It appears that this individual has 

elevated levels of beta activity, as well

as high beta. The excess beta is due 
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to the fact that some of the EEG alpha 

actually exists in the beta band, as de-

!ned. A second fact, which is a limita-

tion of any Fourier-based method, is 

that there appears to be a second har-

monic to the fundamental, evident as a 

broad spectrum of energy, centered at 

exactly twice the dominant alpha. This 

harmonic is not due to any aspect of 

the equipment, aside from the fact that 

Fourier analysis uses simple sinewaves 

as the basis function, and any deviation 

from a simple sinewave appearance 

will produce higher harmonics. The al-

pha is visibly nonsinusoidal in this case, 

consisting of a sharper top wave and a 

"atter bottom wave. This does not con-

stitute any “real” beta activity, but sim-

ply shows that the wave is not a simple 

sinewave. There is no a priori reason 

that EEG waves should be sinusoidal, 

and in many cases they are not, such as 

the boxlike shape of theta, or the wicket 

shape of mu waves.

We therefore see several limitations 

of a sinewave-based metric that as-

sumes the presence of exact frequency 

bands and pure sinewaves. The follow-

ing example (!gures 2 and 3) shows a 

perfectly functional, asymptomatic in-

dividual, who happens to have a peak 

alpha frequency at the high end of the 

population distribution. Moreover, the 

alpha waves are not purely sinusoidal, 

and have a di#erent shape at the top 

of the wave, compared to the bottom 

of the wave. These two characteristics 

combine to produce a qEEG result that 

appears to show excess energy in the 

beta range. Of particular concern is the 

fact that the nonsinusoidal wave mor-

phology introduces a !rst harmonic at 

twice the fundamental, so that the FFT

analysis shows abnormal energy in the

vicinity of 24 Hz, in a broad band. This 

phenomenon will occur with any Fouri-

er-based method, including JTFA analy-

sis. Therefore, whether one uses an FFT 

or JTFA-based method, the presence of 

rhythms in the boundaries of the com-

ponent bands, or with a nonsinusoidal 

waveform, will produce these types of 

anomalous readings.

The resulting maps show these ex-

cesses. They are not related to any aspect 

of the equipment, but re"ect rather the 

vagarities of using an FFT to analyze a 

peculiar, yet normal, waveform. If the 

map is interpreted on its own, one might 

consider this individual signi!cantly 

abnormal, and having excess beta and 

high beta. However, this is not at all the 

case. This example shows that a norma-

tive sample may fall short of providing 

a useful assessment basis for those at 

the extreme of the population. It also 

suggests that LZT training that depends 

strongly on normalizing these aspects 

is likely to emphasize factors 

that are either irrelevant, or 

even counterproductive, to 

appropriate clinical progress. 

For example, not only is it 

not clear that reducing the 

amplitude of these signals, or 

the frequency of alpha would 

be bene!cial, but anecdotal 

experience has shown that 

a client may or may not !nd 

that a training bias toward 

“normalization” will produce 

positive results.

Figure 2: Spectral distribution. Non-sinusoidal peak alpha at the high end of the population 
distribution, producing g artifactual beta.  

Figure 3: Topographical z-
score map. Non sinusoidal 
peak alpha at the high end of 
the population distribution, 
producing g artifactual beta.  
Using FFT or JTFA-based 
method, the presence of 
rhythms in the boundaries of 
the component bands, or with 
a nonsinusoidal waveform, will 
produce anomalous readings.
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Figure 4 (courtesy of D. Kaiser) 

shows the distribution of alpha peak 

frequency in a normal population. It is 

evident from this graph that a signi!-

cant segment of the normal population 

will have a peak alpha that is either at 

or below 9 Hz, or at or above 11 Hz. Be-

cause these individuals lie at the edges 

of a typical qEEG alpha band, their EEGs 

will tend to produce “abnormal” results 

when subjected to a statistical compari-

son such as a z-score.

A further complicating factor oc-

curs with respect to aging. A database 

can attempt to compensate for age-

related changes by either using a “bin” 

method, or by regressing values against 

age. This will e"ectively ensure that the 

database has age-appropriate norms 

for the chosen bands. It does not, how-

ever, ensure that the bands chosen are 

appropriate for any age. 

Figure 5, (from http://www.iomoni-

toring.pro/eeg.htm) shows the typical 

values of posterior dominant rhythm 

(PDR) as a function of age. It shows that 

the PDR changes quickly from ages one 

through !ve, in particular. One result of 

this fact is that, as the PDR moves from 

one band (theta) into the other (alpha) 

in the analysis, abrupt changes in scores 

may be observed (Mulder, 2013). For ex-

ample, a child of age 4 will have a PDR 

that lies at the cusp of the two bands, 

and will not be adequately represented. 

This suggests that, particularly with re-

spect to age, !xed bands may be a limi-

tation. Furthermore, customized bands 

may be more desirable, both with re-

gard to age, and with regard to individ-

ual di"erences.

E�ects of eye and task conditions

A further consideration relates to the 

conditions of the reference acquisition. 

Most existing reference databases in-

clude an eyes-closed (EC) and an eyes-

open (EO) condition. Some also include 

one or more task-related conditions. 

Any of these references might be used 

either for assessment, or for LZT train-

ing. Therefore, it is important to under-

stand how the brain responds to these 

conditions, with respect to particular 

EEG frequency bands and amplitudes.

The following graphs (developed 

in collaboration with D. Kaiser) show 

the typical e"ect of closing the eyes in 

a normal adult population (!gure 6), as 

well as task-related changes (!gures 7 

and 8). This con!rms the well-known 

observation that alpha increases by a 

factor of up 2.2, maximally in the occip-

ital leads. Because this set of curves is 

based upon a population statistic, it ac-

curately represents the di"erences that 

will exist in a z-score reference of eyes-

closed EEG, when compared to the cor-

responding eyes-open EEG. It may be 

noted that the particular sets of leads 

can be separated by their response to

the eyes-closed condition, and break 

naturally into bands such as 8-12, 4-7, 

and 12-15, based upon the observed 

separation of curves. This provides an 

interesting validation of the choice 

of the standard bands, showing that 

they do re#ect something about how 

the brain is wired, and how it responds 

to changes, in this case, the closing or 

opening of the eyes.

The following 

Typical values of PDR as a function of age

Figure 4: Distribution of alpha peak frequency in a normal population (courtesy of D. Kaiser).

Figure 5: Posterior 
dominant rhythm as a 
function of age.
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The following graph shows the EO EEG compared to a task (age-appropri-

ate reading). In this case, we observe that the population shows increases of up 

to 100% in the low delta range, increases up to 1.5 in the alpha range, and less 

change in the theta and beta ranges.

The following graph shows the EO EEG compared to a di#erent task (serial 

7’s). In this case, the changes are even more pronounced. In this case, the di#er-

ence in alpha increases to a factor of up to three, and a further dependence on

beta occurs, in both directions, in the range of 15 to 24 Hz.

These two comparisons between

eyes-open resting condition and task 

conditions provide several important 

observations. One is simply that a brain 

under a task can have an EEG amplitude 

pattern that di#ers signi!cantly from 

that at rest. Another observation is that 

the di#erences are frequency depen-

dent, and are most signi!cant in the 

alpha range.

When put into practice, the intent 

of the LZT reference may be open for 

interpretation, and there is room for 

creativity in this aspect. For example, 

a reference may be designed to place 

a demand on the client, other than 

to simply “be more normal.” There is 

an analogy to other forms of therapy, 

such as paradoxical intention in psy-

chotherapy, which facilitates change

by moving the client into an extreme 

position, and then allowing for learn-

ing to occur. There is no authoritative 

reason why neurofeedback must be 

done using a reference that purports 

to be some “ideal” or “most e$cient” 

pattern.

Neurofeedback, !exibility, and 

variability

The primary issue with neurofeedback 

can be considered to be one of "ex-

ibility, not necessarily adherence to a

particular norm. For example, !gure 9 

shows mean z-scores (colored bars) as 

well as z-score variation (“error” lines) 

for a 1-minute sample of EEG. It is evi-

dent that the z-scores that are closest to 

normal also exhibit the greatest varia-

tion. The few z-scores that are the most 

deviant also show the least amount of 

variability. It is almost a rule that any 

variable that is more deviant will have 

a tendency to be less variable, in a sys-

tem in which variability is one of the 

key elements of self-regulation.

Figure 6: E!ect of eyes closing on EEG amplitude.

Figure 7: EEG amplitude. Eyes open vs. Task 1.

Figure 8: EEG amplitude. Eyes open vs. Task 2.
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certain percentage (usually 10% to 40%) 

to lie outside the target range, while the 

client still gets positive rewards. This al-

lows the client’s brain to adjust in an indi-

vidual manner, and to allow some values 

to remain “deviant.” Without this provi-

sion, the necessity would arise to pay 

more attention to the speci!c choices 

of z-scores, and to avoid z-scores that do 

not speci!cally relate to the complaint or 

disorder under care. This also provides 

a robust approach to “optimal function-

ing” and “peak performance” z-score 

training, because an individual’s unique 

characteristic(s) would naturally tend to 

occupy the population of outliers that is

ignored, hence neither reinforced nor in-

hibited, by the training protocol.

The concept of paradoxical training 

has existed in other areas of psycho-

therapy. By challenging an individual 

in a particular way, it becomes possible 

to enable a system to explore di"erent 

boundaries and modes of behavior. As 

one example, a golfer might temporar-

ily place a weight on a club, in order to 

exaggerate the motor activities associ-

ated with a swing. When the weight is 

removed, the swing is improved in the 

unweighted case, as well.

Choice of population (or individual) 

references

It is important that a reference can be 

associated with a normally distributed 

population of values. However, this 

does not require a population of indi-

viduals. A series of samples from any 

individual, taken over time, is in itself 

a statistical sample. Once the relevant 

values are reduced to simple tables of 

means and standard deviations, all that 

matters is that the reference values are 

correct, and that there is some normal 

distribution that underlies them. As an

example of a normal population of val-

ues derived from a single individual, !g-

ure10 shows the distribution of instan-

taneous values over a 1-minute epoch.

The gaussianity of this distribution is 

visually evident.

Figure 9: Mean z-scores (colored bars) as well as z-score variation (“error” lines)  
for a 1-minute sample of EEG.

Figure 10:  Distribution of instantaneous values from a single individual over a 1-minute epoch. The gaussianity of this distribution is 
visually evident.



NeuroConnections Spring 2014

33

och. The gaussianity of this distribution 

is visually evident.

The validity of an individual refer-

ence for LZT use can be further validat-

ed statistically. The following table sum-

marizes an example of goodness-of-!t

values for all 19 10-20 sites, for 10 fre-

quency bands, for an example 1-minute 

sample. Figure 11 shows these values in 

graphical form. The bars represent the 

goodness of !t for every site, and for ev-

ery component band. It is evident that 

a high-quality !t is achieved for every 

value and every site, from this sample 

of EEG.

qEEG Z-Score cryogenics

The ability to construct an LZT target 

from an arbitrary sample of EEG opens 

the door to many possibilities. One is to 

capture EEG signatures from individu-

als as a precaution for future events or 

conditions. For example, if EEGs are 

taken from all participants in athletic 

competition or other potentially dan-

gerous activities, these can be used as 

references to assess the e"ects of injury 

or other adverse events or conditions. 

Decisions regarding whether an athlete 

has been signi!cantly impaired, and 

should or should not return to play, can 

be well addressed by comparing the 

EEG with a known healthy condition. In 

the practice of optimal aging, it is also 

possible to capture EEG from individu-

als in healthy states, before age-related 

decline sets in. By training to one’s own 

EEG during healthy phase, one can 

avoid the possibility of less than opti-

mal results if one’s neurofeedback is di-

recting the client away from their own 

healthy operating parameters.

In many practices, the qEEG refer-

ence database is used for both assess-

ment, and for LZT neurofeedback. In

the original embodiment, one set of 

computed references was used for the 

assessment phase, and a di"erent set 

was used for LZT neurofeedback. This 

was done so that the instantaneous val-

ues used for training would correspond 

to the instantaneous variation observed 

in the reference sample. For the instan-

taneous references, both the between-

subject variation and the within-subject 

variation were included in the data. As 

a result, since the reference standard 

deviations are larger, the resulting com-

puted live z-scores are smaller, typically 

by 1 to 1.5 standard deviations. When 

this was !rst observed, there was some 

confusion and concern, and it was nec-

essary to explain the statistics before 

users became comfortable with this 

di"erence. The question then arose, 

why cannot the instantaneous values 

correspond to the assessment values, 

so that an EEG that produced a 3.0 SD 

excess of beta on a report, would also 

produce a 3.0 SD excess in the live dis-

play. The fact is that this is possible, and Figure 11:  Goodness-of-�t values for all 19 10-20 sites, for 10 frequency bands, for a 1-minute 
sample.

Figure 12
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by using a static reference for live train-

ing, the expected correspondence can 

be observed.

Static versus Dynamic Z-Score 

References

When normative databases are con-

structed using similar principles, it is 

an expected, and observed, result that 

they will produce similar references. 

Figure 12 (from Thatcher & Lubar) 

shows the match, for example, between 

the Lifespan and the BrainDX databas-

es. This match therefore demonstrates 

that di"erent databases can be used as 

references, and will produce equivalent 

results.

Figure 13 shows the relationship 

between the dynamic EEG data and 

the population values, as well as how 

the static distribution compares with a 

dynamic distribution. The static norms 

re#ect the average values for multiple 

individuals, but do not re#ect indi-

vidual variation. The dynamic popula-

tion norms, by incorporating all of the 

variation, both between and within in-

dividuals, produces a very large distri-

bution. However, this distribution does 

not represent the range of any particu-

lar individual’s optimal functioning. 

The !gure also shows three individual 

distributions, representing individuals 

on the high, middle, and low parts of a 

population.

Consider Mr. “Red” for example. His 

normal range of function is represented 

by the red parameter values, and the red 

bell curve describing his distribution. If 

Mr. Red is somehow dysregulated or 

meets with some adverse conditions, 

his EEG may deviate from that normal 

set of values, either by becoming hy-

peractive (excess) or hypoactive (de!-

cit) in that particular value. If a standard 

normative reference is used to train Mr. 

Red to recover, then the system will, by 

de!nition, tend to reward Mr. Red when 

his values move more toward a “normal” 

level, which may not be optimal for him. 

The assumption that a population sta-

tistic is optimal for all individuals is tan-

tamount to assuming that everyone is 

a “Mr. Green” or would be better o" by 

being more like Mr. Green. However, 

this contradicts the foundational as-

sumption of the database, which is that 

everyone in the population is healthy, 

even if they occupy outer regions of the 

normal distributions.

There is a need to demonstrate 

the equivalence between obtaining 

live training data from more than one 

possible real-time implementation. In 

particular, although static references 

are generally computed using FFT’s, the 

live data is more often obtained using 

real-time method such as using digital 

!lters or a related complex demodula-

tion technique (Collura, 1990)

Figure 13: 
Relationship 
between the 
dynamic EEG data 
and the population 
values.
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When comparing static and dy-

namic results, it is important to consider 

relevant similarities, and di"erences, in 

the methods used to compute param-

eters.

If one method is used to compute 

the reference values, and a di"erent 

method is used to compute the real-time 

values, then it will be of concern wheth-

er there is concordance, or consistency, 

between the methods. If one chooses a 

particular method, e.g. FFTs of 2-minute 

samples, for the static values, and uses a 

di"erent method, e.g. some other trans-

formation, for the dynamic values, there 

may not be su$cient consistency to 

consider them to provide similar infor-

mation. For example, if I use height as 

a measure of growth each month and 

weight as a measure every year, and at-

tempt to correlate them, there will be a 

poor match, because these two param-

eters measure essentially di"erent char-

acteristics. With regard to waveforms, 

there are parameterizations that relate 

to, for example, height (e.g. peak-to-

peak amplitude), while others relate to 

weight (e.g. total power). The assumed 

or actual match between two di"erent 

metric approaches cannot be assumed; 

it should be demonstrated.

There are implementations in 

which the static data are derived from 

FFT analysis of long samples, while the 

dynamic data are derived from a di"er-

ent type of transform, such as a Hilbert 

or Gabor transform. When one exam-

ines these transforms, they are all es-

sentially Fourier-like methods, but with 

variations in the kernel of the integral. 

When these methods are compared, 

di"erences of up to 18% between dif-

ferent types of transforms can arise, due 

primarily to di"erences in the window-

ing or kernel function.

The value of JTFA transforms is that 

they produce information in time as 

well as in frequency. However, all such 

transforms are technically de!ned over 

an in!nite time interval, and for them to 

produce output related to the signal of 

interest, the signal must be in the center 

of the window. Signals near the epoch 

edges are e"ectively reduced or even 

removed by the windowing function.

For this reason, a transform might 

be selected for the real-time computa-

tion, as well as for the reference data-

base. However, transform methods are 

not well suited to real-time implemen-

tation, because of the inherent delay 

associated with the epoch and window-

ing operation. With a 1-second analysis 

epoch, any transform-based method 

will experience a response delay on the 

order of ½ of the epoch length, or 500 

milliseconds. This is rather long, when 

compared with the response times of 

methods based on digital !lters.

Most neurofeedback software em-

ploys digital !lters, or a related method, 

to compute real-time data for biofeed-

back purposes. This is because a digital 

!lter provides a faster response time 

than any transform-based method. Dig-

ital !lters provide a continuous process-

ing of the data, and proceed one data 

point at a time, without having to use 

any particular epoch size or window-

ing technique. Digital !lters emphasize 

the most recent data, and gradually de-

emphasize earlier data, with a continu-

ous function that is de!ned by the !lter 

type. Digital !lters are designed using 

di"erent methods, such as Butterworth, 

Chebychev, Elliptical, or other methods. 

All digital !lters proceed by adding a 

single data point to the computation, 

and combining it using weighting coef-

!cients, with the previous data and re-

sults. This is in contrast with transforms, 

which always look at a !nite extent of 

past data, usually on the order of 1 sec-

ond, and analyze it in isolation, so as 

to estimate the immediate value of a 

relevant parameter. It is this window-

ing and epoch selection that causes 

all transforms to su"er from a built-in 

delay that is independent of how fast 

the computer is. Even if a computer is 

in!nitely fast, a transform will always 

introduce a response delay because of 

the way that it looks at the data.

The ability to match static referenc-

es and dynamic calculations cannot be 

taken for a given, unless either the same 

method is used for both, or if the correla-

tion can be justi!ed and demonstrated. 

As an example, if one takes weight on a 

clinical medical scale, and also at home 

on a cheap scale, the match may be as 

poor as 5 pounds, maybe more. But if 

both scales are at least calibrated to the 

same reference, a match within 1 pound 

or so can be expected. Similarly, if one

takes care of the relationship between 

a static and a dynamic computation, 

and can demonstrate the appropriate 

relationship, then dynamic measures 

can be referenced to static data, even if 

the methodology of the computations 

is not identical.

In the results shown here, care was 

taken to implement a digital !lter using 

the method of complex demodulation 

(Childers), which ensures that the in-

stantaneous values converge to match 

values that would be obtained from an 

FFT of the same time frame. Rather than 

being another epoch-based transform, 

the !lter used here is continuous, and 

provides output that instantaneously 

re#ects the most recent data, without 

any delay due to !xed epoch size or win-

dowing. In the steady state, the values 

would match identically. Due to the ef-

fects of the time-variation in the signal, 

small di"erences will occur, because the 

digital !lter is actually doing a better 

job than the FFT of tracking changes in 

the EEG. However, the ultimate degree 

of matching can be shown to be within 

a few percent, even in the face of a dy-

namic EEG. This matching would not be 
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possible if the dynamic method used a 

transform such as Hilbert of Gabor. It is 

made possible by the fact that the digi-

tal !lters are designed with an eye to 

producing results that are comparable 

to FFT results, even when dynamic and 

static data are compared.

In summary, rather than there be-

ing a hard distinction between dynamic 

and static data, there is a continuous 

relationship. As dynamic data are con-

sidered over longer time periods, they 

converge to match the static data, if the 

computations are done correctly. A long 

damping factor, or time-constant, when 

applied to dynamic statistics, produces 

a result that necessarily matches that of 

a long-term analysis. If the basic scaling 

factor between a windowed method 

(e.g. FFT) and a digital !lter is taken into 

account, the agreement is essentially 

perfect. In the results shown here, the 

responses of each !lter band were care-

fully matched between the static norms 

(BrainDx/NxLink) and the dynamic data 

(BrainMaster digital !lters) so that the 

agreement is obtained. When a played-

back EEG is viewed, revealing short-term 

changes in z-scores, maps, and sLORETA 

images, and the damping factor is in-

creased to slow down the responses, 

the resulting data are essentially identi-

cal to that which would be obtained if a 

longer segment were selected and pro-

cessed as a unit, providing averaged re-

sults. This provides the bridge between 

dynamic and static data, bringing the 

worlds of traditional qEEG assessment 

and live neurofeedback training to-

gether into one connected whole.

There are two key advantages to 

this approach, when contrasted to one 

that uses one method for static data 

and another method for dynamic data. 

One is that the maps and z-scores are 

entirely consistent. Live maps “look like” 

static maps, and reveal similar z-score 

deviations. This eliminates the previous 

confusion that has resulted when live 

z-scores did not match static z-scores, 

but required a compensation of 1 to 

1.5 standard deviations to convert from 

one to the other. A second, more impor-

tant advantage is that one database can 

be used for both live neurofeedback 

and for summary statistics. Rather than 

having to have one set of norms for as-

sessment and a di"erent set of norms 

for training, a single set of targets can 

be used. The di"erence between short-

term and long-term variations can be 

accounted for by adjusting the size of 

z-score targets. In the method that uses 

a single set of references, it is found that 

z-score targets are more often in the 

range of 1.0 to 2.0 standard deviations, 

which is what is intuitively expected, 

rather than the 0.5 to 1.0 standard de-

viations that is used when a separate 

database constructed using a di"erent 

dynamic computation method is em-

ployed.

Figure 14 shows, in real-time, a 

comparison of results obtained from 

an FFT (top) with those obtained from a 

quadrature digital !lter that implements 

complex demodulation (bottom). It is 

clear that both signals have the same 

behavior in time, and one appears to be 

essentially a replica of the other. 

The similarity in the time-progress 

Figure 14: Real-
time comparison 
of results obtained 
from an FFT 
(top) with those 
obtained from 
a quadrature 
digital �lter that 
implements 
complex 
demodulation 
(bottom). Each 
signal has the 
same behavior 
in time, and 
one appears to 
be essentially a 
replica of the other.
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of the two signals is visually apparent, 

and can be further con!rmed by plot-

ting the values against each other. 

Figure 15 shows a comparison of live 

values obtained from FFT, and from 

complex demodulation, plotted against 

each other. A scatter plot of this type is 

used to con!rm a match between two 

variables, in a linear !t. In this case, a 

goodness of !t of 97.23 percent is ob-

served. There is also a constant ratio, or 

scale factor, of 1.0629, which amounts 

to a consistent six percent ratio. This is 

explained by the di"erence in that an 

FFT uses a tapering “window,” while the 

JTFA does not. When this window is ac-

counted for by this constant scale fac-

tor, the resulting accuracy is therefore 

roughly 2.8 percent, or plus or minus 

1.4 percent. This di"erence is insigni!-

cant for z-scores, which, particularly if 

they are taking into account popula-

tion and/or individual variation, must 

vary much more than a few percent, to 

produce a change of even a tenth of a 

standard deviation.

The following comparison shows 

that this match is valid in practice, as it 

shows comparison maps taken from 10 

seconds of EEG, and plotted using three 

methods. The top set is generated with-

in NeuroGuide using the ANI database, 

the second set is generated within the 

BrainAvatar software using the BrainDX 

references, and the bottom set is gen-

erated within the BrainAvatar software, 

using the ANI references. The maps are 

essentially identical in all bands, with 

the proviso that the BrainAvatar ANI 

maps, being derived from a dynamic 

reference, show slightly smaller z-scores. 

There is a further slight di"erence in the 

precise de!nitions of the frequency 

bands, which would account for some 

of the minor di"erences observed.

Figure 15:  Scatter plot comparison of live values 
obtained from FFT, and from complex demodulation.

Figure 16: Comparison maps taken from 10 seconds of EEG, 
and plotted using three methods. Top row NeuroGuide using 
the ANI database. Middle row BrainAvatar software using the 
BrainDX references. Bottom row BrainAvatar software, using 
the ANI references.
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As a further example of the ability 

to match dynamic with static statistics, 

Figure 17 from Collura shows the agree-

ment between a coherence measure-

ment derived from a digital !lter imple-

mentation (BrainMaster) with those 

obtained using an FFT (NeuroGuide). 

It is clear from this example that both 

methods produce comparable results, 

across the entire range of coherence 

values from very low (<10%) to very 

high (80%).

As a veri!cation that the static ref-

erence can be used for LZT neurofeed-

back, Figure 18 shows the progress of 

an LZT session with a client using the 

BrainDX Live Z-Scores and Percent Z-OK 

training:

The observed behavior in this ses-

sion is typical, and is essentially the 

same as has been observed when using 

the original ANI LZT implementation. Z-

Scores typically require a few minutes 

to begin to adapt, and signi!cant train-

ing e"ect is generally seen between 

5 and 15 minutes into the session. It is 

also typical that sometime after the 10-

minute mark, the client may begin to 

tire, and z-scores will begin to diverge 

again. At this point, the session should 

be ended. This session summary ex-

ample con!rms that even when using 

static targets, it is possible to perform 

e"ective LZT training, providing simply 

that the target ranges are chosen at an

appropriate level.

Figure 19 shows a summary of the 

relevant raw values during this session, 

demonstrating that key EEG parameters 

shifted during the session as a result of 

the z-score feedback. This includes de-

creases in slow-wave activity (delta, 

theta, and alpha), as well as increases in 

beta activity.

Online references and further de-

tailed examples of static and dynamic z-

scores and maps can be accessed from: 

http://www.brainm.com/kb/entry/540/

Conclusions

Ultimately, neurofeedback therapy is as 

much an art as a science. While techni-

cal principles underlie its e"ectiveness, 

what occurs in the end is that the brain 

is informed, challenged, and lured into 

various conditions of awareness and re-

sponsiveness. How the brain responds is 

very much a function of each individu-

al’s unique characteristics, the approach 

of the clinician, and !nally, the speci!cs 

of the equipment. There is often more 

than one way to achieve results, and the 

process is not a linear one, but a com-

plex nonlinear interaction. For example, 

LZT training can be and is combined 

with other modalities such as conven-

tional directed EEG training, HEG, or 

audiovisual or electromagnetic stimula-

tion. Also, protocols can be designed to 

Figure 17:  Agreement between 
a coherence measurement 
derived from a digital �lter 
implementation (BrainMaster) 
with those obtained using an FFT 
(NeuroGuide).
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ing/compensating, or individual quali-

ties related to personal optimization or 

preference of brain state and function.

The brain’s goals are e!ectively 

supplemented with additional goals 

related to its internal state and quali-

ties of self-regulation (or not). By using 

various references and di!erent ap-

proaches, it becomes possible to work 

with regard to the client’s progress as a 

process that may include principles of 

direct challenge, alternating challenge 

and rest, paradoxical, and other types 

of information. The position taken here 

is that there is a wide range of possible 

approaches to creating z-score tem-

plate references, including individual-

ized, specialized populations, and task-

related methods, which have yet to be 

fully explored.  
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Figure 18: Progress of an LZT session with a client using the BrainDX Live Z-Scores and  
Percent Z-OK training

Figure 19:  EEG parameters shifts during the session as a result of the z-score feedback included 
decreases in slow-wave activity (delta, theta, and alpha), as well as increases in beta activity.


