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Abstract Mental stress has been identified as one of the ma-
jor contributing factors that leads to various diseases such as
heart attack, depression, and stroke. To avoid this, stress quan-
tification is important for clinical intervention and disease pre-
vention. This study aims to investigate the feasibility of
exploiting electroencephalography (EEG) signals to discrimi-
nate between different stress levels. We propose a new assess-
ment protocol whereby the stress level is represented by the
complexity of mental arithmetic (MA) task for example, at
three levels of difficulty, and the stressors are time pressure
and negative feedback. Using 18-male subjects, the experi-
mental results showed that there were significant differences
in EEG response between the control and stress conditions at
different levels of MA task with p values < 0.001.
Furthermore, we found a significant reduction in alpha rhythm
power from one stress level to another level, p values < 0.05.
In comparison, results from self-reporting questionnaire
NASA-TLX approach showed no significant differences be-
tween stress levels. In addition, we developed a discriminant
analysis method based on multiclass support vector machine
(SVM) with error-correcting output code (ECOC). Different
stress levels were detected with an average classification ac-
curacy of 94.79%. The lateral index (LI) results further
showed dominant right prefrontal cortex (PFC) to mental
stress (reduced alpha rhythm). The study demonstrated the

feasibility of using EEG in classifying multilevel mental stress
and reported alpha rhythm power at right prefrontal cortex as a
suitable index.
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1 Introduction

Mental stress is one of the major health problems in modern
society and can be defined as the body reaction to subjected
psychosocial, physical, and biological stimuli [76]. Stress in-
volves the activation of hypothalamus-pitui tary-
adrenocortical (HPA) axis and sympathetic nervous system
(SNS). The activation of HPA axis stimulates adrenal cortex
to release glucocorticoids (cortisol), which plays an important
role in the regulation of various physiological processes such
as blood pressure, glucose levels, and carbohydrate metabo-
lism [63, 72]. Chronic malfunction in SNS results in a variety
of physical, immunological, and emotional health problems
including anxiety, depression and post-traumatic stress disor-
der (PTSD), heart attack, stroke, and immunological disorders
[13, 15, 61, 80]. Stress also affects the brain structure and
functions. Several studies have reported that exposing to ex-
cessive stress could cause shrinkage of hippocampus [3, 28,
48, 60]. To prevent these, stress detection especially at its early
stage is important for clinical intervention and disease
prevention.

Questionnaire-based self-reporting is the most commonly
used method to measure an individual’s level of mental stress
[59]. However, self-reporting is a subjective method [57]. An
objective method would be through measuring salivary corti-
sol and alpha amylase level [89]. Salivary cortisol is used as a
biomarker for stress studies [38]. Several studies reported that
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salivary cortisol significantly increased after the onset of phys-
iological stress [53]. However, the cortisol has a slow response
and its level is affected by circadian rhythm [33], i.e., the
concentration level of cortisol in the early morning is higher
than that in the afternoon. Salivary α-amylase has also recent-
ly used as a biomarker of sympathetic nervous system re-
sponse to stress [22, 30]. Significant increase in salivary α-
amylase was found during stressful tasks such as, playing
video games [79], before and after examination [6, 7, 73],
Trier Social Stress Test (TSST) [29, 64], speech and counting
task [32], and mental arithmetic task [65]. It however may
vary with one’s physical activity [54], where the concentration
of salivary α-amylase is significantly higher during exercise
than in a neutral-control period.

Stress can also be assessed directly from the cortical re-
sponse. Non-invasive neuroimaging modalities such as func-
tional magnetic resonance imaging (fMRI), positron emission
topography (PET), magnetoencephalography (MEG), electro-
encephalography (EEG) and functional near-infrared spec-
troscopy (fNIRS) are available to study brain functions and
conditions of animal and human, including mental stress [34,
36, 62, 83]. Measurements are often taken from the prefrontal
cortex (PFC) [20, 66, 70, 86], which is the brain region re-
sponsible in regulating thoughts, actions, and emotions. The
PFC has been identified as the most sensitive to the detrimen-
tal effects of stress exposure [3, 39] and displayed behavioral
and somatic responses to stress [43, 68, 85, 88]. In this study,
we quantify mental stress by measuring electrical brainwaves
(EEG) at the PFC. The EEG is selected because it offers sev-
eral advantages such as non-invasive data acquisition, ease to
use, low cost set-up, and its high temporal resolution at milli-
second scale [5]. EEG signals are categorized by frequency
bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and
beta (14–30 Hz). Each frequency band may be used as an
index for brain states.

Few studies have used EEG to study mental stress previ-
ously. The brain region under study depends on the type of
stimuli/tasks (visual, working memory, or audio). Hill and
Castro found high beta rhythm activity in the sensory motor
area during stressful healing task [40]. Seo and Lee found
similar high beta wave in the frontal and occipital lobe when
negative images were presented to induce stress [77]. Another
set of studies found significant increase of beta waves in the
temporal lobe to odor irritation and traffic noise [14, 69, 84].
Thompson and Alonso separately found an increase of beta
waves associated with a decrease of alpha waves in the ante-
rior cingulate and frontal anterior cortex [2, 82]. Gärtner et al.
found that frontal theta decreased with stressful mental arith-
metic task [27]. Harmony et al. reported high delta waves, on
the other hand, while solving difficult mental arithmetic task
[35]. To detect mental stress, pattern recognition approaches
are often adopted [58]. Table 1 summarized some of the most
commonly used expert systems in classifying EEG signals

individually or in combination with other physiological sig-
nals in stress related studies. Thus far, the systems are limited
to detect the presence of stress only. We believe clinical
intervention/therapy to stress disorders should be carried out
at the early stage; hence, we are interested to classify stress
into multilevel.

In this work, we investigate the feasibility of using EEG
signals to classify mental stress into three levels. We propose
an experimental protocol to induce three levels of stress on
participants while solving an established mental arithmetic
task with three levels of difficulty. Each level of the task dif-
ficulty corresponds to a level of stress. In addition, time pres-
sure and negative feedback of peer performance are used as
stressors in this study. We propose wavelet transform to ex-
tract features that are highly correlated with mental stress and
multiclass support vector machine with error correction code
(ECOC) to classify the stress into three levels. The quantifi-
cation of stress at multiple levels based on EEG signals is
achieved for the first time.

2 Materials and methods

2.1 Participants

Eighteen healthy male right-handed adults with an age ranges
from 20 to 24 years old with the same level of education
participated in this study. All participants were medically fit,
non-smoker, and non-users of drugs that have any effect on
the sympathetic nervous system. They were informed to avoid
physical activity, food, caffeine, chewing gum, alcoholic con-
sumption and soft drinks at least 2 h prior to the experiment
[4]. Additionally, the experiment was conducted between 4:00
and 5:30 p.m. to minimize the influences of circadian rhythm.
Written informed consent from each participant was obtained
and ethical approval in accordance with the declaration of
Helsinki was granted by local ethics committee at University
Teknologi PETRONAS. The participants were asked to min-
imize head movements and to remain calm during the entire
experiment.

2.2 Stress induction procedure

Mental arithmetic task with three levels of difficulty was de-
veloped in this study [17]. Each level of the arithmetic task
corresponds to one level of stress. The task at level one in-
volves 3 one-digit integer (ranging from 0 to 9) and uses the
operands of + and/or – (example 2 − 3 + 9). At level two, the
task involves 3 integers (ranging from 0 to 99) with at least 2
two-digit integers and uses the operands of +, −, and × (ex-
ample 58 − 17 × 3). At level three, the task involves 4 integer
numbers (ranging from 0 to 99) and the operands include +, −,
×, and ÷ (example 99/3 − 76 + 51). The answer for each
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question is displayed on a computer monitor among the se-
quence of B0^ to B9^ as demonstrated by Fig. 1a. Participant
selects the right answer by single left-click of the mouse.

Two stressors were deployed in this study, i.e., time pres-
sure and negative feedback about peer performance. For time
pressure, participants were trained at each level of task diffi-
culty and the average time taken for each individual in answer-
ing the questions was recorded. This recorded time was then
reduced by 10% and used as time pressure on the participants.
In actual fact, the participants were expected to score less than
50% when the time given to answer each question was re-
duced by 10%. On the other hand, negative feedback of an-
swering the questions (Bcorrect,^ Bincorrect,^ or Btimeout^)
and performance indicators (one for the participant’s perfor-
mance and another one for the averaged peer performance

fixed at 90% accuracy) were displayed on the computer mon-
itor to further induce stress in experiment participants.

The experiment protocol was performed in four steps. First,
brief introduction was given to all participants to be familiar
with the proposed tasks. Second, participants were trained for
5 min at each level of difficulty in the mental arithmetic (MA)
task and time taken to answer each question was recorded.

Third (i.e., control phase), the participants had their EEG
signals recorded for total duration of 15 min while solving
arithmetic problems at three levels of difficulty without any
time limit per question. After each of the EEG recording, a
questionnaire was filled by the participants self-reporting
about task loading according to NASA-TLX rating scale
[37]. Fourth (i.e., stress phase), similar as in the control phase,
the EEG was recorded for 15 min under stress conditions

Table 1 Previous studies related to EEG arousal and physiological signals classification

Author/year Physiological
signals used

Stressor Number of
subjects

Expert system
employed

Classification
accuracy

Ishino (2003)
[47]

EEG Video and puzzle games 1 NN 54.5, 67.7, 59, and 62.9% for
happy, calm, sad, and relax

Ryu (2005) [74] EEG and ECG Arithmetic task 10 Multiple
regression
analysis

N/A only to study brain response

Chanel (2006)
[12]

EEG, ST, BP, and
respiration

Video and image 4 Bayes and FDA 55% for low and high arousal

Chanel (2007)
[10]

ST, BP, respiration
and EEG

Recall event 1 LDA, SVM 76 and 73% using EEG and
peripheral signals

Lin (2008) [56] EEG Driving simulator 6 K-NN and NBC 71 to 77% between stress
and rest

Chanel (2009)
[11]

EEG, ST, BP, HRV,
and respiration

Recall memory 11 LDA, SVM, and
RVM

63% using EEG and 70% using
fusion of features

Hosseini (2010)
[44]

ST,HRV, and EEG Pictures induction calm-neutral
and negative-excited

15 SVM and Elman
network

84.1% for two categories, calm
and stress using psychological
signals, and
82.7% using EEG signals

Saidatul (2011)
[75]

EEG Mental arithmetic task 5 NN 91.17% using Burg Method,
88.36% using
Welch Method and 85.55%
using Yule Walker for stress and
relax

Rahnuma (2011)
[71]

EEG Negative videos and images 4 MLP 71.69, 60.74, 71.84, and 65.94%
for
happy, calm, sad, and relax

Khosrowabadi
(2011) [51]

EEG Before and after examination 26 K-NN, SVM 90% for stress and relax

Sharma (2013)
[78]

EEG, ECG,ST,BP, eye
gaze, and pupil
diameter signals

Video: stress and non-stressed film 25 GA+SVM,
GA+ANN

95% using all physiological
signals and 91% using EEG
signals alone

Jun (2016) [49] EEG Arithmetic task and stroop 10 SVM 96% arithmetic from rest, 88%
stroop from rest, and
75% combination of arithmetic
and stroop task

EEG electroencephalography, ECG electrocardiogram, ST skin temperature, BP blood pressure, HRV hear rate variability, NN neural network, LDA
linear discriminate analysis, RVM relevance vector machine, K-NN k-nearest neighbor,MLPmultilayer perceptron, NBC naive bayes classification,GA
genetic algorithm, FDA fischer’s linear discriminant analysis
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(time limit and negative feedback), and again participants
completed another questionnaire about task loading. In order
to avoid any habituation or expectation effects, the order of the
task conditions was balanced in which half of the participants
began with the control task while the other half of the partic-
ipants began with the stress task.

The entire experiment duration for each participant was
about an hour, consisting of four blocks. Fig. 1 gives an
overview of the experimental protocol and the block design.
Each block consists of 40 s of mental arithmetic task and
30 s of rest. The rest duration of 30 s was chosen to avoid
the occurrence of habituation and to give sufficient time to
determine brain areas activated during the MA task. During
the 40-s task, several arithmetic questions are posted
depends on how fast the response of the participant in
answering. During the 30-s rest the computer screen displays
with a white cross with black background and participants
are instructed to look at the fixation cross as a visual cue for
trial onset. In this experiment, we controlled the EEG
recording by sending a marker via channels 23–24 of EEG
BrainMaster as B1^ to mark the start of the MA task and B0^
to mark the end of the task for each block. During the
experiment, all participants were instructed to answer the
questions as fast and accurate as they could and not to guess
the answer. The average accuracies of answering the
questions at each level of the task were reported and used
for subsequent performance evaluation.

2.3 EEG measurement

We measured EEG signals from the prefrontal cortex
(PFC) using Discovery 24E system (BrainMaster
Technologies Inc., Bedford, OH). The system was
equipped with seven active electrodes namely as FP1,
FP2, F7, F3, Fz, F4, and F8 and one reference electrode
(A1) attached to the earlobes as shown in Fig. 2. All
electrodes were placed on the PFC surface scalp based
on the international 10–20 system of electrode place-
ment. The sampling frequency for EEG was set to
256 Hz and the impedance was minimized (kept below
5 kΩ in this study to avoid the noise effects due to
sudden change in temperature and humidity occurred
during data recording [25, 50]) using small amount of
gel directly to the scalp.

2.4 EEG analysis

EEG data were preprocessed offline using the plug in
EEGLAB 2013a toolbox [18]. Imported EEG data were
bandpass filtered between 0.5 and 30 Hz using third order
Butterworth filter. Independent component analysis (ICA)
was applied to remove eye blink artefacts. The channels were
decomposed into a number of independent components (by
default the number of components is equal to the number of
recorded channels). The component corresponding to eye

30 s20 s

5 min

40 s

Block 1 +Baseline 

Timeout
Incorrect

Others 

You 

Stressors 

Correct

Block 2 + Block 3 + Block 4 +

30 s20 s

5 min

40 s

Block 1 +Baseline Block 2 + Block 3 + Block 4 +

Level 1

Level 2

Level 3

Questionnaire

Questionnaire

a Mental Arithmetic

b Control

c Stress

3 min

3 min

Fig. 1 Experimental protocol of mental stress study. a Levels of mental
arithmetic task difficulty. Six measurements were performed in this
experiment, three for control condition, and three for the stress
condition. b Block design at control condition. c Block design at stress
condition. In each record (control and stress), there were four blocks. In

each block, mental arithmetic was allocated for 40 s followed by 30-s rest.
The vertical red dash-line marks the start of the task and vertical green
dash-line marks the end of the task in each level. The sequence of the
three levels was randomized to avoid any bias in results

Med Biol Eng Comput



blink artifacts was removed. The signals were further analyzed
using wavelet transform (WT) [52]. WT is a suitable method
for multi-resolution time-frequency analysis. WT
decomposed EEG signals into set of functions to obtain their
approximation and the corresponding coefficients at different
levels. Features can then be extracted from them. The wavelet
transform is formed by shifting and scaling function, as fol-
lows:

ψa;b tð Þ ¼ 1
ffiffiffi

a
p ψ

t−b
a

� �

ð1Þ

where a, b ϵ R and a > 0. The variables a, b, and R are scaling
factor, shifting factor, and wavelet space, respectively. The
wavelet family of Dubechies-8 (db8) was used in this work
to decompose EEG signals into five frequency bands (delta,
theta, alpha, beta, and gamma). Table 2 gives a summary of
the wavelet decomposition levels and their corresponding fre-
quency bands.

From the wavelet coefficients, we extracted the mean ab-
solute values of the wavelet coefficients in each sub-band and
the average power and energy from the activation period only.
The activation period was defined from the onset of the task to
the end of the task in each block. Then we averaged the four

active blocks into a single block of 40 s. In this work, a win-
dow of 1 s moving-time interval was used to calculate the
features of EEG signals. The power spectral density values
were calculated using Eq.2.

P ¼ 1

N
∑

kþN−1

n¼k
x nð Þj j2 ð2Þ

where x(n) represents the segmented EEG signal and N is the
length of the EEG clean signal. The energy of EEG frequency
bands was defined as

E ¼ 1

N
∑
∞

−∞
x nð Þj j2 ð3Þ

Based on our previous study [1], we found that EEG alpha
band signals were highly correlated with mental stress states.
Therefore, we limit the analysis to EEG alpha rhythm power
in this study. There is a total of 840 features for each subject in
each condition of the recording phase: control and stress,
where we have 40 power values, 40 mean values, and 40
energy values multiply by 7 EEG measuring electrodes.
Each feature is normalized to the range (− 1, 1) before feeding
into the classifier using Eq. 4.

Featurenorm ¼ x‐min xð Þ
max xð Þ‐min xð Þ � 2‐1 ð4Þ

where x is the entire feature set, min(x) is the minimum
value in the feature set, and max(x) is the maximum value
in the feature set, respectively. Dominant features were
then selected based on their significant response to mental
stress. Independent samples t test was used to find the
significantly discriminant electrodes and features. Based
on that, only the power values were considered as features
in this study.

Fig. 2 EEG electrode placement
and experiment setup

Table 2 EEG frequency bands and wavelet decomposition levels

Decomposition level Frequency bandwidth (Hz) Frequency band

DL1 64–128 Noisy signal

DL2 32–64 Noisy gamma

DL3 16–32 Beta

DL4 8–16 Alpha

DL5 4–8 Theta

AL5 0–4 Delta
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2.5 Lateral index at stress

In order to identify the dominant PFC region to mental
stress, lateral index at stress (LIS) was calculated from
alpha rhythm in all the subjects within two left and two
right scalp quadrants (i.e., anterior inferior and anterior
superior) as shown in Fig. 3 [46]. The anterior inferior
quadrants contained medial prefrontal cortex (mPFC)
and ventrolateral PFC; FP1, FP2, F7, and F8 sites. The
left and right anterior inferior contained ventrolateral F7
and F8 sites, respectively. Meanwhile, the anterior supe-
rior quadrants contained the dorsal F3, Fz, and F4 sites, in
which F3 and F4 located on the left and right anterior
superior dorsolateral PFC, respectively [16, 81]. The LIS
values were calculated according to Eq. 5. The right and
left variables represent the power values calculated from
the contralateral electrodes, F3, F4, FP1, FP2, F7, and F8.
The LIS index provides values in the range of − 1 to + 1.
A near-zero value of LIS indicates bilateral dominance
that depends on statistical analysis. Negative value indi-
cates high level of stress on the right PFC than left PFC.
One-tailed t test was performed to determine the right or
left dominance of PFC hemisphere.

LIS ¼ Right‐Left
Right þ Left

ð5Þ

2.6 Support vector machine with ECOC

Support vector machine (SVM) is a supervised machine
learning technique widely used for classification, regres-
sion, and density estimation [87]. The technique trans-
forms the data into a higher-dimension space using kernel

function and classifies them with a hyperplane. SVM was
selected for its ability to model linear as well as more
complex decision boundaries. The decision boundary hy-
perplane in SVM is estimated based on its training dataset
by maximizing the distance between the hyperplane to the
nearest data point.

The SVM is usually used in binary classification, i.e.,
problems with two classes. For three classes such as this
(L1, L2, and L3 levels of stress), three SVM classifiers
are needed. One SVM classifies L1 from the other two
(L2 and L3), a second SVM classifies L2 from L1 and L3,
and a third SVM classifies L3 from L1 and L2. In this
work, SVM is extended to multiclass classifier by fusing
SVM decisions using error-correcting output code
(ECOC) [19]. Three bit codes are used, (1, − 1, − 1),
(− 1, 1, − 1), and (− 1, − 1, 1) to represent each class/
level, i.e., L1, L2, and L3, respectively. If all three SVMs
classify correctly, then the multiclass-classifier-target code
is met and ECOC reports no error. However, if at least
one of the classifiers misclassifies, then the class with its
code closest in hamming distance to the computed output
code will be assigned as the answer. The SVM classifiers
and ECOC algorithm were implemented using MATLAB
software (Mathworks, Natick, MA).

The performance metrics of the classifier are classification
accuracy, sensitivity, specificity, positive predictive value
(PPV) and negative predictive value (NPV) described in
[24]. The classification accuracy is defined as the ability of
the classifier to correctly identify positive and negative results
and can be evaluated using Eq. 6.

Accuracy ¼ TPþ TN

Pþ N
� 100 ð6Þ

where true positive (TP) are data points correctly labeled as
stress at the corresponding level and true negative (TN) are
data points correctly labeled as not stress at the corresponding
level. The sensitivity measures the classifier ability to correct-
ly identify positive result and calculated using Eq.7.

Sensitivity ¼ TP

TPþ FN
� 100 ð7Þ

where false negative (FN) refers to data points incorrectly
labeled as stress at the corresponding level. Specificity gives
a measure of the classifier ability to identify negative results
defined Eq. 8.

Specificity ¼ TN

TNþ FP
� 100 ð8Þ

where true negative (TN) are data points correctly labels as not
stress at the corresponding level and false positive (FP) refers
to data points incorrectly labeled as not stress at the
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Fig. 3 EEG sensors location based on 10–20 system of electrode
placement
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corresponding level. The positive and negative prediction
values calculated using Eq. 9 and Eq. 10, respectively.

PPV ¼ TP

TPþ FP
� 100 ð9Þ

NPV ¼ TN

TNþ FN
� 100 ð10Þ

2.7 Statistical analysis

Statistical analysis on subjective scores of NASA-TLX and
wavelet coefficient features for all the subjects and conditions
were performed using two-sample t test. Prior to t test, we
confirmed if our data follow a Gaussian distribution. The
two-sample t test was carried out with three different param-
eters, namely condition, the control level, and the stress level.
Firstly, we used two-sample t test to calculate the differences
between each paired of the task difficulty (control vs stress).
Secondly, we calculated the differences between different
stress levels. For example, stress L1 versus others (i.e., L2
and L3), and so on. The differences were considered statisti-
cally significant if p < 0.05.

3 Result and analysis

3.1 Performance score and NASA-TLX score

First, we look at the results of completing the MA tasks based
on accuracy as we progress with level of difficulty, under
control and stress condition. Fig. 4a shows clear reduction in
performance (accuracy) with increasing the level of task dif-
ficulty/stress. We also found significant difference between
control and stress condition, supporting the effectiveness of
our stressors (time pressure and negative feedbacks). In this
work, we adopted the standard NASA-TLX questionnaire

[37] approach for comparison purpose. The NASA-TLX
helps estimate mental stress by considering six established
factors: mental demand, physical demand, temporal demand,
performance, effort, and frustration. Each factor has a score
ranged from 1 to 20 with total score of 120. These scores were
then normalized into the range of B0^ to B1.^ Higher scores
than 0.80 correspond to high level of stress. In this case, the
NASA-TLX results show significant differences between the
control and stress condition in the first two levels of MA task
difficulty but not the third level, as shown in Fig. 4b. At L3,
the participants responded to NASA-TLX questionnaires sim-
ilarly under both control and stress conditions.

3.2 EEG

The mean spectral densities of EEG alpha rhythm for the three
task difficulty levels under control and stress conditions are
shown in Fig. 5. From the figure, it is obvious that there is a
significant difference between the control and stress condi-
tions at all three task difficulty levels. The mean EEG alpha
rhythm power is significantly reduced with increasing the task
difficulty under both control and stress conditions. The obtain-
ed result is correlated well with the performance accuracy
score reported in BSection 3.1.^

3.3 Statistical analysis

Our statistical analysis further reveals significant differences
between mental arithmetic tasks under control and under
stress conditions. Table 3 shows the t values and the p values
calculated between control and stress conditions for all the
three assessment methods, namely performance score (accu-
racy), NASA-TLX, and EEGmeasurements. It also shows the
t values and the p values calculated between stress levels for
the three assessment methods. Performance score and EEG
measurements showed significant differences between control
and stress and between the control and the stress levels (from
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Fig. 4 Performance accuracy in answering the questions correctly under
the three level of arithmetic tasks in control and stress condition. The L1
represents level one of mental arithmetic task, L2 represents level two of

mental arithmetic task, and L3 represents level three of arithmetic task.
The sign B*^ indicates that the significant was measured with p < 0.05,
B***^ indicates that p < 0.001, and B****^ indicates that p < 0.0001
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one level to another). On the other hand, NASA-TLX gives no
significant differences between control L3 and stress L3 and
between levels when under stress condition. We may thus
conclude that stress assessment using subjective method
(NASA-TLX) is not a suitable method as compared with cor-
tical measurements using EEG in detecting different mental
stress levels.

3.4 Lateral index at stress

The result corresponding to LIS asymmetry based on EEG
alpha rhythm is summarized in Table 4. The values were cal-
culated according to Eq. 5. The LIS showed that right PFC
was highly involved during mental stress in all the three levels

of mental stress across all the subjects. The statistical analysis
showed that LIS were significant at level one and level two of
mental stress as compared to baseline (p < 0.05), and no sig-
nificant difference was observed at level three. Note that the
baseline of asymmetry was assumed to be equal, i.e., LIS = 0.

3.5 SVM+ECOC

The average classification accuracy of mental stress levels by
SVM with ECOC is summarized in Table 5. The table pro-
vides the performance metrics (accuracy, sensitivity, specific-
ity, area under ROC curve, positive predictiv value, and neg-
ative predictive value) of the classifier under the three levels of
mental stress. The results show that the accuracy drops from
97.61 to 95.37 and to 91.4 with increasing level of stress. The
average classification accuracy across the three levels of stress
is therefore 94.79%. ROC plot provides a view of the sensi-
tivity and specificity of the classifier, revealing level one of
mental stress with the highest accuracy as shown in Fig. 6.

4 Discussion

In our previous study [1], we used EEG signals to detect
mental stress from a resting (control) state. In this work, our
aim is to investigate the feasibility of using EEG signals to
quantify the levels of mental stress on the PFC.We proposed a
new assessment protocol for the purpose and its correspond-
ing discriminant analysis method. Using multiclass support
vector machine (SVM) with error-correcting output code
(ECOC), we successfully classified the stress into three levels.
Additionally, the study discussed the relationship between
stress tasks, performance ability, and commonly used subjec-
tive and objective assessment methods. We found that the
performance score (accuracy) significantly reduced with in-
creasing task difficulty under control and under stress
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Fig. 5 Mean alpha rhythm power calculated from wavelet coefficients
(DL4) in two mental states: control: blue color and stress: red color. The
L1 represents level one of mental arithmetic task, L2 represents level two
of mental arithmetic task and L3 represents level three of mental arith-
metic task. The sign B***^ indicates that the significant was measured
with p < 0.001 and B****^ indicates that p < 0.0001

Table 3 Statistical analysis of
subjective and objective
measurements with two different
parameters

Parameter 1: condition Performance score NASA-TLX EEG

(Control vs stress) t value p value t value p value t value p value

L1 6.632 < 0.001 5.841 < 0.001 8.410 < 0.0001

L2 5.871 < 0.001 4.210 0.001 7.712 < 0.0001

L3 5.541 < 0.001 0.912 0.231 4.745 < 0.0011

Parameter 2: control level

L1 vs L2 2.731 0.014 2.821 0.010 2.714 0.014

L2 vs L3 2.798 0.024 3.321 0.009 3.126 0.010

L1 vs L3 3.101 0.013 4.621 0.001 3.131 0.011

Parameter 3: stress level

L1 vs L2 2.831 0.013 Not significant 2.732 0.021

L2 vs L3 2.914 0.021 Not significant 2.460 0.034

L1 vs L3 3.112 0.011 Not significant 2.901 0.012
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conditions. The result is consistent with previous studies
reporting performance decrease with high workload and job
stress [21, 23, 42]. It is also consistent with fMRI studies
which reported that performance effectiveness reduced with
increasing task difficulty [31, 45].

Subjective assessment using NASA-TLX demonstrated
significant differences at the first two levels of task diffi-
culty but not the third level under control condition and
was not distinguishable between all levels under stress
condition. Especially at level three, participants evaluated
their mental states similarly in both conditions (control
and stress). Therefore, NASA-TLX is not a suitable mea-
sure for stress levels as there is little correlation between
NASA-TLX scores and performance scores. In contrast,
objective assessment using EEG demonstrated significant
differences between the task difficulty levels under stress
condition. In this work, significant decrease in alpha
rhythm power was obtained at all three levels of mental
stress, when compared to control condition. The study
also found that alpha rhythm power was significantly re-
duced from one level to the next higher level. The EEG
results are correlated well with the performance scores,
unlike the NASA-TLX approach. The EEG results obtain-
ed in our study are consistent with previous workload
studies. Previous studies showed that alpha rhythm power
decreased with increasing level of workload [8, 9, 26, 41].

Another study conducted on mothers of children with
mental retardation (considered high stress) reported sig-
nificant reduce in alpha rhythm under stress [67]. Our
study forms the first attempt to distinguish different stress
levels using EEG technique.

The results from lateral index demonstrated the domi-
nance of right PFC at all the three levels of mental stress
with most significant at level one of mental stress. With
increasing the level of stress, the value of LIS became
significantly reduced. This suggests that high level of
stress may impair the whole PFC activities. This result
of LIS is consistent with previous studies [2, 55]. The
proposed multiclass support vector machine (SVM) with
error-correcting output code (ECOC) also showed good
performance in classifying mental stress levels. To the
best of our knowledge, this is the first study using wavelet
features of EEG signals with multiclass SVM and ECOC
to classify mental stress levels. The classification perfor-
mance metrics (accuracy, sensitivity, specificity, area un-
der ROC curve, positive predictive value, and negative
predictive value) showed promising results.

Admittedly, there are few limitations of our study needed to
be addressed in future studies. Firstly, we only recruited male
subjects to rule out possible effects of the hormonal cycle in
our stress induction procedure. Future research will investi-
gate whether our result (right dominant PFC to stress) can be
generalized to both gender. Secondly, the number of elec-
trodes used is of limited (7-EEG electrodes). More EEG elec-
trodes will be considered in future to better localize mental
stress on the PFC subregion.

Table 4 Prefrontal EEG LIS for three levels of mental stress

Asymmetry Control level one Control level two Control level three

FP2-FP1 − 0.09 ± 0.16 − 0.01 ± 0.16 − 0.10 ± 0.01

F4-F3 − 0.08 ± 0.15 − 0.09 ± 0.16 − 0.12 ± 0.04

F8-F7 − 0.10 ± 0.16 − 0.10 ± 0.15 − 0.11 ± 0.03

Right-left − 0.09 ± 0.16 − 0.09 ± 0.14 − 0.13 ± 0.03

Asymmetry Stress level one Stress level two Stress level three

FP2-FP1 − 0.210 ± 0.03 − 0.022 ± 0.12 − 0.001 ± 0.07

F4-F3 − 0.349 ± 0.01 − 0.130 ± 0.03 − 0.001 ± 0.04

F8-F7 − 0.228 ± 0.02 − 0.132 ± 0.03 − 0.001 ± 0.06

Right-left − 0.310 ± 0.02 − 0.253 ± 0.06 − 0.003 ± 0.07

Table 5 Statistical parameters of the classifiers, SVM+ECOC

Statistical parameters (%) Multilevel SVM+ECOC

Level one Level two Level three

Accuracy 97.61 95.37 91.40

Sensitivity 97.60 96.20 92.06

Specificity 97.60 94.40 90.70

Area under ROC 99.60 98.80 97.03

PPV 97.60 94.50 90.86

NPV 97.60 96.20 91.95

Level one

Level two

Level three

1-Specificity

S
en

si
ti

v
it

y
Fig. 6 ROC curves of multiclass SVMwith ECOC. The red circles at the
upper left corner represent the cut-off points
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5 Conclusion

In this study, we have demonstrated for the first time that EEG
signals can be used to reliably discriminate between mental
stress levels. The study reported significant differences be-
tween the three levels of mental stress, as measured by two-
sample t test withmean p values of 0.021, 0.034, and 0.012 for
level one to level two, level two to level three, and level one to
level three, respectively. The proposed multiclass classifier
SVM with ECOC showed its potential in classifying stress
levels with an average accuracy of 94.79%. Furthermore, the
study revealed the dominance of the right prefrontal cortex to
mental stress as supported by the results of lateral index at
stress. The questionnaire approach NASA-TLX on the other
hand showed no significant differences between stress levels.
The proposed multilevel assessment may therefore form an
important first step towards early detection of mental stress
disorders.
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