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Fig. 12-6 (a) The idealized Bode amplitude plots for a two-pole transfer

function. The individual asymptotes for each pole are shown dashed,

and the resultant is drawn as a solid continuous broken-line plot, (fa)

Phase-response Bode plot for (a).

The Dominant Pole If in Eq. (12-16) fp\ is much smaller than /p2, the
above discussion in connection with Fig. 12-6 indicates that the upper 3-dB
frequency is given approximately by/pi. If jvi — 4/pi, an exact plot indicates
(Prob. 12-7) that the 3-dB frequency is only 6 percent smaller than/pl. We
conclude that if a transfer function has several poles determining the high-
frequency response, if the smallest of these is fpi and if each other pole is at least
two octaves higher, then the amplifier behaves essentially as a single-time-constant
circuit whose 3-dB frequency is fpl. The frequency fp\ is called the dominant
pole.

12-5 STEP RESPONSE OF AN AMPLIFIER

An alternative criterion of amplifier fidelity is the response of the amplifier
to a particular input waveform. Of all possible available waveforms, the most
generally useful is the step voltage. In terms of a circuit's response to a step,
the response to an arbitrary waveform may be written in the form of the
superposition integral. Another feature which recommends the step voltage
is the fact that this waveform is one which permits small distortions to stand
out clearly. Additionally, from an experimental viewpoint, we note that
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excellent pulse (a short step) and square-wave (a repeated step) generators
are available commercially.

As long as an amplifier can be represented by a dominant pole, the correla-
tion between its frequency response and the output waveshape for a step
input is that given below. Quite generally, even for more complicated ampli-
fier circuits, there continues to be an intimate relationship between the dis-
tortion of the leading edge of a step and the high-frequency response. Sim-
ilarly, there is a close relationship between the low-frequency response and
the distortion of the flat portion of the step. We should, of course, expect
such a relationship, since the high-frequency response measures essentially
the ability of the amplifier to respond faithfully to rapid variations in signal,
whereas the low-frequency response measures the fidelity of the amplifier for
slowly varying signals. An important feature of a step is that it is a combina-
tion of the most abrupt voltage change possible and of the slowest possible
voltage variation.

Rise Time The response of the low-pass circuit of Fig. 12-2 to a step
input of amplitude V is exponential with a time constant R^C?.. Since the
capacitor voltage cannot change instantaneously, the output starts from zero
and rises toward the steady-state value V, as shown in Fig. 12-7. The output
is given by

v0 = V(l ~ e~"B!C!) (12-19)

The time required for va to reach one-tenth of its final value is readily found
to be Q.lRzCz, and the time to reach nine-tenths its final value is 2.3/^2^2.
The difference between these two values is called the rise time tr of the circuit
and is shown in Fig. 12-7. The time tr is an indication of how fast the ampli-
fier can respond to a discontinuity in the input voltage. We have, using
Eq. (12-7),

9 9 0 "i^L
t = 2 2R C = — (12-20)

Note that the rise time is inversely proportional to the upper 3-dB frequency.
For an amplifier with 1 MHz bandpass, tr = 0.35 us.

Fig. 12-7 Step-voltage response

of the low-pass RC circuit. The

rise time tr is indicated.
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Fig. 12-8 Pulse response for the case
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Consider a pulse of width'V What must be the high 3-dB frequency
fH of an amplifier used to amplify this signal without excessive distortion? A
reasonable answer to this question is: Choose fl{ equal to the reciprocal of the
pulse width, fn = l/tp. From Eq. (12-20) we then have tr = 0.35«p. Using
this relationship, the (shaded) pulse in Fig. 12-8 becomes distorted into the
(solid) waveform, which is clearly recognized as a pulse.

Til t or Sag If a step of amplitude V is impressed on the high-pass circuit
of Fig. 12-1, the output is

^-1/B.ct (12-21)

For times t which are small compared with the time constant RiCi, the response
is given by

<12'22)

From Fig. 12-9 we see that the output is tilted, and the percent tilt, or sag,
in time ti is given by

P = V X 100 = X 100% (12-23)

It is found6 that this same expression is valid for the tilt of each half cycle
of a symmetrical square wave of peak-to-peak value V and period T provided

Fig. 12-9 The response va> when a

step t>i is applied to a hiph-pass RC

circuit, exhibits a tilt.

ST"Q'
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Sec. 72-5 MULTISTAGE AMPLIFIERS / 385

that we set ^i = T/2. If / = 1/5P is the frequency of the square wave, then,
using Eq. (12-3), we may express P in the form

x 100 = *c x 100 = "̂  x 100% (12-24)

Note that the tilt is directly proportional to the lower 3-dB frequency. If
we wish to pass a 50-Hz square wave with less than 10 percent sag, then /&
must not exceed 1.6 Hz.

Square-wave Testing An important experimental procedure (called
square-wave testing) is to observe with an oscilloscope the output of an amplifier
excited by a square-wave generator. It is possible to improve the response
of an amplifier by adding to it certain circuit elements,1 which then must be
adjusted with precision. It is a great convenience to be able to adjust these
elements and to see simultaneously the effect of such an adjustment on the
amplifier output waveform. The alternative is to take data, after each succes-
sive adjustment, from which to plot the amplitude and phase responses.
Aside from the extra time consumed in this latter procedure, we have the
problem that it is usually not obvious which of the attainable amplitude and
phase responses corresponds to optimum fidelity. On the other hand, the
step response gives immediately useful information.

It is possible, by judicious selection of two square-wave frequencies, to
examine individually the high-frequency and low-frequency distortion. For
example, consider an amplifier which has a high-frequency time constant of
1 us and a low-frequency time constant of 0.1 s. A square wave of half
period equal to several microseconds, on an appropriately fast oscilloscope
sweep, will display the rounding of the leading edge of the waveform and will
not display the tilt. At the other extreme, a square wave of half period approxi-
mately 0.01 s on an appropriately slow sweep will display the tilt, and not the
distortion of the leading edge. Such a waveform is indicated in Fig. 12-10.

It should not be inferred from the above comparison between steady-state
and transient response that the phase and amplitude responses are of no
importance at all in the study of amplifiers. The frequency characteristics
are useful for the following reasons. In the first place, much more is known
generally about the analysis and synthesis of circuits in the frequency domain
than in the time domain, and for this reason the design of coupling networks
is often done on a frequency-response basis. Second, it is often possible to
arrive at least at a qualitative understanding of the properties of a circuit from
a study of the steady-state-response in circumstances where transient calcula-
tions are extremely cumbersome. Third, compensating an amplifier against
unwanted oscillations (Chap. 14) is accomplished in the frequency domain.
Finally, it happens occasionally that an amplifier is required whose character-
istics are specified on a frequency basis, the principal emphasis being to amplify
a sine wave.
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Fig. 12-10 A square-wave (shaded)

input signal is distorted by an amplifier

with a lower 3-dB frequency/L. The

output (solid) waveform shows a tilt

where the input is horizontal.

12-6 BANDPASS OF CASCADED STAGES

The high 3-dB frequency for n cascaded stages is /# and equals the frequency
for which the overall voltage gain falls 3 dB to 1/V2 of its midband value.
To obtain the overall transfer function of noninteracting stages, the transfer
gains of the individual stages are multiplied together. Hence, if each stage
has a dominant pole and if the high 3-dB frequency of the iih stage is///;, where
i = I,- 2, . . . , n, then /H can be calculated from the product

(12-25)

For n stages with identical upper 3-dB frequencies we have

/HI = /JJ2 = ' ' • = /Hi = • • • = fHn = fjj

Thus /# is calculated from

to be

fa
(12-26)

For example, for n = 2, fa/fa = 0.64. Hence two cascaded stages, each with
a bandwidth/// = 10 kHz, have an overall bandwidth of 6.4 kHz. Similarly,
three cascaded 10-kHz stages give a resultant upper 3-dB frequency of 5.1 kHz,

etc.
If the low 3-dB frequency for n identical noninteracting cascaded stages

is/i, then, corresponding to Eq. (12-26), we find

——*: (12-27)

We see that a. cascade of stages has a lower /// and a higher fL than a single
stage, resulting in a shrinkage in bandwidth.

If the amplitude response for a single stage is plotted on log-log paper, the
resulting graph will approach a straight line whose slope is 6 dB per octave
both at the low and at the high frequencies, as indicated in Fig. 12-3. For an
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n-stage amplifier it follows that the amplitude response falls 6n dB per octave,
or equivalently, 20n dB per decade.

Interacting Stages If in a cascade of stages the input impedance of one
stage is low enough to act as an appreciable shunt on the output impedance
of the preceding stage, then it is no longer possible to isolate stages. Under
these circumstances individual 3-dB frequencies for each stage cannot be
defined. However, when the overall transfer function of the cascade is
obtained (Sec. 12-10), it is found to contain n poles (in addition to k zeros).
If the pole frequencies are/i, . . . ,/2, . . . , /„, then the high 3-dB frequency
of the entire cascade f*, is given by Eq. (12-25) (with///,- replaced by/<), pro-
vided that the zero frequencies are much higher than the pole frequencies
(Prob. 12-14).

If the cascade has a dominant pole/o which is much smaller than all other
poles, all terms in the product in Eq. (12-25) may be neglected except the first.
It then follows that /// = fD, or the high 3-dB frequency equals the dominant-
pole frequency. (From here on we shall drop the asterisk on /#.)

Consider now the situation discussed in Sec. 12-4, where there is a dom-
inant frequency //>, a second pole whose frequency is only two octaves away,
and all other poles are at very much higher frequencies. Then Eq. (12-25)
becomes

1 1 1

VI VI V2
(12-28)

Since we expect the 3-dB frequency to be approximately equal to the dominant
frequency, substitute/// = //> into the second term in Eq. (12-28) to obtain

or

1 + v.,
/// = 0.94//,

(12-29)

(12-30)

This calculation verifies that the high 3-dB frequency is less than 6 percent
smaller than the dominant frequency provided that the next higher pole fre-
quency is at least two octaves away.

If the pole frequencies are not widely separated, the result of Prob. 12.-15
indicates that /// is given (to within 10 percent) by

i = i . i J A + A
JH / 2

Jn
(12-31)

If this equation is applied to the case considered above, /i = fo and /2 = 4/z>
and all other poles much higher, the result is /// = O.S9//>, in close agreement
with Eq. (12-30). If Eq. (12-31) is applied to the case where/! = /2 and all
other poles are much higher, then /// = 0.65/1 (instead of the exact value of
0.64/j). For three equal poles, Eq. (12-31) yields/// = 0.53/1 (instead of the
exact value of 0.51/i).
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Fig. 14-5 Normalized plot of frequency response of a two-pole

amplifier with feedback (k = 1/2Q).

For example, in Fig. 14-6 there is indicated one possible response to a voltage
step. Note that the output overshoots its final value by 37 percent and oscil-
lates before settling down to the steady-state voltage. For most applications
such a violent response is not acceptable.

The important parameters of the waveform are indicated in Fig. 14-6 and
are denned as follows:

Rise time = time for waveform to rise from 0.1 to 0.9 of its steady-state
value

Delay time = time for waveform to rise from 0 to 0.5 of its steady-state
value

Overshoot = peak excursion above the steady-state value
Damped period — time interval for one cycle of oscillation
Settling time = time for response to settle to within ±P percent of the

steady-state value (P specified for a particular application, say P = 0.1)

Analytical expressions for the response of the amplifier to a step of ampli-
tude V is obtained by setting Vf(s) = V/s into Eq. (14-16) and solving for the
inverse Laplace transform. Recalling from Eq. (14-17) that Q = l/2fc, the
poles, given in Eq. (14-12), can be put into the form

(14-21)s = -fcco0 +
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Fig. 14-6 The step response of a two-pole feedback amplifier for a
damping factor k = 0.3.

If k = 1, the two poles coincide, corresponding to the critically damped case.
If k < 1, the poles are complex conjugates, corresponding to an underdamped
condition, where the response is a sinusoid whose amplitude decays with time.
If k > 1, both poles are real and negative, corresponding to an overdamped
circuit, where the response approaches its final value monotonically (without
oscillation). For the underdamped case it is convenient to introduce the
damped frequency

w= (14-22)

and the response v0(t) to a step of magnitude V into an amplifier of midband
gain A0f is given by the following equations:

Critical damping, k = 1 :

= 1 - (1 4- *

Overdamped, k > 1:

v0(t) , 1 —(-
2 •v'W^l \klVA of

(14-23)

(14-24)
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