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We consider the possibility that classical dynamical systems display motion in their lowest energy
state, forming a time analogue of crystalline spatial order. Challenges facing that idea are identified
and overcome. We display arbitrary orbits of an angular variable as lowest-energy trajectories for
nonsingular Lagrangian systems. Dynamics within orbits of broken symmetry provide a natural
arena for formation of time crystals. We exhibit models of that kind, including a model with
traveling density waves.

In this paper we will investigate a cluster of issues
around the question of whether time-independent, con-
servative classical or semiclassical systems might exhibit
motion in their lowest energy states. Fully quantum sys-
tems are the subject of a companion paper [1]. Related
issues have been raised in a cosmological context [2][3],
but those investigations consider quite different aspects,
in which the time dependence introduced by the expan-
sion of the universe plays a significant role.

General considerations. When a physical solution of a
set of equations displays less symmetry than the equa-
tions themselves, we say the symmetry is spontaneously
broken by that solution. Here the meaning of “physical
solution” can be interpreted differently in different con-
texts, but one interesting case, that will concern us here,
is of the lowest energy solutions of a time-independent,
conservative, classical dynamical system. If such a solu-
tion exhibits motion, we will have broken time transla-
tion symmetry spontaneously. If the dynamical variable
is an angular variable, then the motion will be periodic
in time, so the time-translation symmetry is not entirely
lost, but only reduced to a discrete subgroup. Spatial
periodicity is, of course, associated with formation of or-
dinary crystals, so it is natural and suggestive to refer to
the formation of time crystals.

It is very easy to construct simple Lagrangians or
Hamiltonians whose lowest energy state is a spatial crys-
tal. With φ(x) an angular variable, the potential energy
functions

V1(φ) = − κ1
dφ

dx
+
λ1
2

(
dφ

dx
)2

V2(φ) = − κ2
2

(
dφ

dx
)2 +

λ2
4

(
dφ

dx
)4 (1)

with all the Greek coefficients positive, are minimized for
dφ1

dx = κ1

λ1
, dφ2

dx = ±
√

κ2

λ2
respectively. In both cases the

spatial translation symmetry of the original potential is
spontaneously broken; in the second case inversion sym-
metry is broken as well. The combined inversion φ(x)→

−φ(−x) is preserved in both cases, as is a combined in-
ternal space-real space translation φ(x)→ φ(x+ε)− dφ

dx ε.
From this one might surmise that time crystals are like-

wise easy to construct, at least mathematically. On sec-
ond thought, however, reasons for doubt appear. Speak-
ing broadly, what we’re looking for seems perilously close
to perpetual motion. Also, if the dynamical equations
conserve energy, then a minimum-energy solution where
the variables trace out an orbit implies that the energy
function assumes its minimum value on a whole curve in
(φ, φ̇) space – not, as we expect generically, at an isolated
point.
Dynamical equations. That easy/impossible di-

chotomy carries over into the dynamical equations. If
one simply turns the space derivatives in Eqn. (1) into
time derivatives, then the resulting Lagrangians

L1(φ, φ̇) = − κ1φ̇+
λ1
2
φ̇2

L2(φ, φ̇) = − κ2
2
φ̇2 +

λ2
4
φ̇4 (2)

are associated with the energy functions

E1(φ, φ̇) =
λ1
2
φ̇2

E2(φ, φ̇) = − κ2
2
φ̇2 +

3λ2
4
φ̇4 (3)

The first of these is minimized at φ̇1 = 0, the second at

φ̇2 = ±
√

κ2

3λ2
. So the analogue of our first symmetry-

breaking example in Eqn.(1) has collapsed, but the sec-
ond survives, with a quantitative change.

On the other hand if we convert the space derivatives
in Eqn. (1) into momenta, the resulting Hamiltonians
are

H1(p, φ) = − κ1p+
λ1
2
p2

H2(p, φ) = − κ2
2
p2 +

λ2
4
p4 (4)
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We find precisely the original algebraic structure for the

minimum-energy solutions, viz. p1 = κ1

λ1
, p2 = ±

√
κ2

λ2

respectively. Their physical implications are entirely dif-
ferent, though. Indeed, they correspond to φ̇1 = φ̇2 = 0:
thus no symmetry breaking occurs, in either case.

This disappointing consequence of the Hamiltonian
formalism is quite general. The Hamiltonian equations
of motion

ṗj = − ∂H

∂qj

q̇j =
∂H

∂pj
(5)

indicate that the energy function E(pj(0), qj(0)) =
H(pj(0), qj(0)), regarded as a function of the dynami-
cal variables at a chosen initial time, is minimized for
trajectory with ṗj = q̇j = 0, since the gradients on the
right-hand side of Eqn. (5) vanish.

How do we reconcile this very general null result in
the Hamiltonian approach, with our positive result in
the Lagrangian approach? The point is that the La-
grangian L2, which gave symmetry breaking, cannot be
converted into a Hamiltonian smoothly. Indeed (putting
κ2 ≡ κ, λ2 = 1 for simplicity) expressing the algebraic
recipe for the Hamiltonian

H2(p, φ) = pφ̇− L2 = pφ̇+
κ

2
φ̇2 − 1

4
φ̇4 (6)

as a function of

p =
∂L2

∂φ̇
= φ̇3 − κφ̇ (7)

leads to a multi-valued function, with cusps where ∂p

∂φ̇
=

0, i.e. p = ∓ 2κ3/2

33/2
, corresponding precisely to the energy

minima φ̇ = ±
√

κ
3 . (See Figure 1.) For κ ≤ 0 H(p) is

regular, but as κ passes through zero there is a swallow-
tail catastrophe.

At the cusps the usual condition that the gradient
should vanish at a minimum does not apply, and so our
null result for smooth Hamiltonian systems is avoided.

For classical physics the Lagrangian formalism is ad-
equate, so let us follow that direction out further. A
logical next step would be to add a potential V (φ) to L2.
Doing that, however, leads us directly into the problem
with energy conservation we anticipated earlier. Mini-
mizing V , we will find a preferred value for φ = φ0. But
minimizing the kinetic part will favor motion in φ, and
there is a conflict.

We can elucidate this issue as it arises for a general
Lagrangian system. Suppose that the energy function of
a system with many degrees of freedom is minimized by

FIG. 1: Energy is a multivalued function of momentum.

nonzero velocities φ̇k0 6= 0, so that

0 =
∂E

∂φ̇k

∣∣∣∣
φ̇k
0

=
∂

∂φ̇k

(
∂L

∂φ̇j
φ̇j − L

)∣∣∣∣
φ̇k
0

=

(
∂2L

∂φ̇k∂φ̇j

)∣∣∣∣
φ̇k
0

φ̇j0 . (8)

Then in the equations of motion

0 =
d

dt
(
∂L

∂φ̇k
)− ∂L

∂φk
=
( ∂2L

∂φ̇j∂φ̇k

)
φ̈j + . . . (9)

the coefficient of the acceleration in the direction φ̈j ∝ φ̇j0
vanishes at φ̇k0 . This leads to a difficulty if there are
forces that require acceleration in that direction. The
equations of motion, which generally serve to determine
the accelerations, may not admit a consistent solution if
the coefficient of the accelerations cannot be inverted.

As we shall discuss below, there are physically inter-
esting models that avoid any singularity. Before turning
to those, however, we now discuss a prescription for con-
tinuing through it.

Brick Wall Solutions: Upon integrating

E =
3

4
φ̇4 − κ

2
φ̇2 + V (φ) (10)

directly we obtain

t(φ) =

∫ φ dφ

±
√

κ
3 ±

√(
κ
3

)2
+ 4

3 (E − V (φ))

(11)

where the ± signs are independent.
The argument of the inner square root is non-negative

if and only if

V (φ) ≤ κ2

12
+ E = ∆ (12)
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where ∆ ≡ E−E0 ≥ 0 is the energy above the minimum

kinetic energy E0 = −κ
2

12 . The inequality is saturated

when φ̇ = ±
√

κ
3 , i.e., when the kinetic energy is mini-

mized. Close to a point φt where this happens,

φ̇ ≈ ±
√
κ

3
±
√

1

κ
V ′(φt)(φt − φ) (13)

Since φ cannot continue past φt without violating the
bound (12), it suddenly reverses direction, φ̇ = ±

√
κ
3 →

∓
√

κ
3 . Such reversal conserves energy, but requires a

sudden jump in the momentum. A “brick-wall” turn-
ing point is appropriate to a potential enforced by an in-
finitely massive source. Unless φt is an extremum of V (φ)
the acceleration diverges at φt, as anticipated above.

Small oscillations about the minimum of a generic po-
tential V (φ) ≈ 1

2µ(φ − φ0)2 exhibit turning points of
this type, with bounded orbits that oscillate between
φt = φ0 −

√
2∆/µ and φ0 +

√
2∆/µ . In the limit of

small ∆, the orbits ricochet about the minimum, with
nearly constant speed |φ̇| =

√
κ
3 , reconciling the appar-

ently contradictory conditions φ̇ = ±
√

κ
3 and φ = φ0.

More conventional turning points arise if the inner ±
sign in (11) is negative, i.e. for V (φ) ≥ E. Now φ̇t = 0
at turning points where V (φt) = E, and the particle
changes direction smoothly.
fgh model: Lagrangians of the form

L = fφ̇4 + gφ̇2 + h (14)

for functions f(φ), g(φ), h(φ) lead to energies of the form

E = 3fφ̇4 + gφ̇2 − h

= 3f(φ̇2 +
g

6f
)2 − g2

12f
− h (15)

(Note that f may be absorbed into a redefinition of φ;
then for constant g this reduces to the model of Eqn.
(10).) If

g2

12f
+ h = const. (16)

the energy will be minimized along the curve φ̇2 + g
6f =

0, for any f > 0, g < 0. Thus we have solutions

φ̇ = ±
√
− g

6f
(17)

This construction demonstrates that any orbit with a ve-
locity that does not change sign can be realized, in many
ways, as the stable minimum energy solution to an ap-
propriate, reasonably simple Lagrangian. It would be
interesting to explore the (thought-)engineering of more
complex models of this kind, and in particular, to in-
vestigate the possibility of realizing non-dissipative (“re-
versible”) computation in the lowest energy state of a
dynamical system [4].

Choosing the constant in (16) to be zero, constancy of
the energy E ≥ 0 leads to

φ̇2 +
g

6f
= ±

√
E

f
(18)

This equation is of a familiar form; it expresses the con-
servation of a pseudo-energy Ẽ for a particle with mass
m = 1

2 and a two-branched E-dependent potential, ac-
cording to

Ẽ = φ̇2 + V (E, φ) (19)

V (E, φ) =
g

6f
∓

√
E

f
(20)

This result allows us to infer the qualitative dynamics,
based on familiar mechanical concepts. Perhaps the most
interesting question is the existence, or not, of turning
points. Putting φ̇ = 0 into Eqn. (19) we find that
E = −g2(φt)/6f(φt) ≡ Vmax evaluated at the turning
point(s) φt. The motion is confined to a region where
V ≤ Vmax. Thus the model can support motions in
which the velocity changes sign, but these motions re-
quire higher energy that the minimal orbit, which is
unidirectional. Actually nothing in our analysis of this
model has depended on the periodicity of φ; upon drop-
ping that assumption, we find the curious situation that
some unbounded motions have smaller energy than any
bounded motion.
Avoiding Singularity Semiclassically: If we relax the

condition Eqn. (16), by allowing a non-constant W ≡
− g2

12f − h, we find that there are initial conditions for
which the equations of motion eventually become singu-
lar, as discussed previously. We are guaranteed to avoid
such conditions if in Eqn. (15) we require

E ≥ Wmax (21)

(Note that in any case E ≥Wmin.) Thus we have models
that work smoothly for high energy, but become singular
at low energy. That is the opposite of the usual philoso-
phy of effective field theory; however it does correspond
to the use of perturbative QCD.

We might also expect that the quantum-mechanical
versions of these models might be more robust, in that
the uncertainty in position and velocity might smooth
over a small region of singularity. Genuine quantiza-
tion of such models – or, for that matter, of the tuned
fgh models and the natural, locked models to come –
presents interesting issues. The Lagrangian formulation
is adequate for path integral quantization, and the higher
derivative terms tend to damp the contribution of the
most irregular paths, particularly if we continue the time
to have a small negative imaginary part. So there are
no obvious show-stoppers, but no existence proofs ei-
ther. The Hamiltonian formulation poses different is-
sues. As we’ve seen, in interesting cases the Hamiltonian

3



is a multi-valued function of the momentum. This im-
plies that the momentum does not provide a complete
set of commuting observables. Nor, therefore, does the
position. Wave functions must be defined as functions
of expanded spaces. We will report work on this subject
elsewhere.

What we can discuss simply is semiclassical quan-
tization. Thus we consider orbits obeying a Bohr-
Sommerfeld condition

S =

∮
p dφ =

∫ 2π

0

(φ̇3 − κφ̇)dφ = 2π~(n+ δ) (22)

with n an integer, and δ a correction for turning points.
(For simplicity we specialize here to f = 1

4 , g = −κ2 , and
h = 0.) If we ignore, at first, the potential, then the
minimal energy orbit is at φ̇ = ±

√
κ
3 , and for it

S = ∓ 2π
2κ3/2

33/2
.

If this expression is not equal to 2π~(n+δ), the quantiza-
tion condition will lead us to a nearby higher-energy orbit
for the ground state, with some |n| � 1 in the relevant
(semiclassical) limit. If the potential is small enough,
that extra energy will be enough to enforce Eqn. (21),
and keep us out of the region where the equation of mo-
tion breaks down. Wave packets constructed from n near
the preferred value will describe, approximately, the mo-
tion prescribed by the classical dynamics.

Naturally Flat Directions; Double Sombrero: It can be
natural to have energy constant along an orbit, if the
points of the orbit are related by symmetry. If we want
this situation to occur along a trajectory representing
non-trivial motion in the minimum-energy state, then
the points assumed at different times must be related
by symmetry transformations, which implies that none
of them is invariant. So we will be looking at models
with spontaneously broken symmetry.

Consider first a Lagrangian with a “sombrero” kinetic
term:

L = 1
4 (ψ̇2

1 + ψ̇2
2 − κ)2 − V (ψ1, ψ2) (23)

The matrix of second derivatives of L with respect to ψ̇i
appearing in Eqn. (8) is

δ2L

δψ̇iδψ̇j
=

(
3ψ̇2

1 + ψ̇2
2 − κ 2ψ̇1ψ̇2

2ψ̇1ψ̇2 ψ̇2
1 + 3ψ̇2

2 − κ

)
(24)

This has a zero eigenvalue with eigenvector

(
ψ̇1

ψ̇2

)
pre-

cisely when v2 ≡ ψ̇2
1 + ψ̇2

2 = κ/3.
If the potential V has a one-parameter family of degen-

erate minima, the minimum-energy solution will move
along the trough of V at constant speed

√
κ/3. The

potential

V = −µ
2

(ψ2
1 + ψ2

2) +
λ

4
(ψ2

1 + ψ2
2)2 (25)

is symmetric under ψ1-ψ2 rotations and, combined with
the kinetic term in Eqn. (23), defines a “double som-
brero” model, with circular motion at constant speed in
the lowest-energy state.

Alternatively we may rewrite this model and its gen-
eralizations in terms of polar fields ρ and φ, where
ψ1 + iψ2 = ρeiφ ≡ ϕ. Then the double sombrero La-
grangian takes the form

L = 1
4 (ρ̇2 + ρ2φ̇2 − κ)2 +

µ

2
ρ2 − λ

4
ρ4 (26)

If ρ is set equal to its value
√

2µ/λ at the minimum of
V (ρ), this reduces to our original Lagrangian (2). Gen-
eralizing, any Lagrangian with a kinetic term that is a
polynomial in φ̇, ρ̇, and ρ, and a potential energy depend-
ing only on ρ, will preserve the symmetry φ→ φ+ η.
Charge and Locking: The charge operator associ-

ated with the original (broken) symmetry is Q =
−
∫
i(ϕ∗πϕ∗ − ϕπϕ) where πϕ = ∂L

∂ϕ̇ depends only on φ̇
and ρ. Thus in states with constant, non-vanishing val-
ues of ρ and φ̇ we have a non-zero, uniform density of Q.
This is significant in two ways:

First: If we suppose that our system is embedded in a
larger symmetry-conserving bath and undergoes a tran-
sition to the symmetry-breaking state, e.g. that it is a
material body cooled through a phase transition, then
the transition will necessarily be accompanied by radia-
tion of an appropriate balancing charge.

Second: Although invariance under both infinitesimal
time-translation φ(t) → φ(t + ε) and under infinitesimal
phase (charge) translation φ→ φ+ η are broken by solu-
tions of the type φ(t) = ωt + β – constant φ̇ – the com-
bined transformation with ωε+ η = 0 leaves the solution
invariant. Thus there is a residual “locked” symmetry.
To exploit it, we can go to a sort of rotating frame, by
using

H̃ = H − ωQ (27)

to compute the evolution. (Here we measure charge us-
ing the charge of ϕ as the unit.) In the rotating frame,
the equations of motion will not contain any explicit time
dependence, but there will be a sort of effective chemical
potential (associated however with a broken symmetry).
The most interesting effects will arise at interfaces be-
tween the locked phase and the normal phase, or between
different locked phases, as exemplified in the preceding
paragraph.
Space-Time Structure; More Complex States: We can

also contemplate slightly more complex examples, that
support qualitatively different, richer physical effects. If
there is a potential for ∇ϕ, or ultimately for ∇ρ, that fa-
vors gradients, then we can have a competition between
the energetic desirability of putting ρ at the energetic
minimum and accommodating non-zero gradients. Un-
like in the case of time derivatives, there is no general
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barrier to reaching a stable compromise. To keep things
simple, let us suppress the underlying ϕ structure and
consider the potential

V (ρ) =
κ1
2

(
1− aρ2 − b

(
dρ

dx

)2
)2

(28)

with a, b > 0. This is minimized by

ρ0 =

√
1

a
sin(

√
a

b
x+ α) (29)

This ρ0 reduces the translation symmetry to a discrete
subgroup. Constant φ̇ produces a charge density wave.

If in addition we have a term of the form

Vgradient =
κ2
2

(
dφ

dx
− µdρ

dx
)2 (30)

then at the minimum φ0(x) will develop spatial structure
as well, according to φ0(x) = µρ0(x) + β, breaking the
phase (charge) symmetry completely. (Note that Vgradient
respects the symmetry φ→ φ+ η.)

We can engineer similar phenomena involving φ̇ most
easily if we work at the level of the energy function. One
can derive general energy functions involving powers of φ̇
from Lagrangians of the same kind, so long as there are
no terms linear in φ̇. Thus if we have an additional term

Ekinetic(φ) =
κ3
2

((dφ
dx

)2 − 1

v2
φ̇2
)2

(31)

then at the minimum we have

φ0(x, t) = µρ0(x, t) + β (32)

ρ0(x, t) =

√
1

a
sin
(√a

b
(x± vt) + α̃

)
(33)

Here in Eqn. (33) we have adapted Eqn. (29) by taking
α = ±vt + α̃. In doing this we assume that the energy
intrinsically associated with time derivatives of ρ van-
ishes (or that it is dominated by the locking effects of
Eqns. (30, 31)). Both spatial and time translation are
spontaneously broken, as is reflected in the disposable
constants α̃, β, and so is time-reversal T , as reflected in
the disposable sign.

Combining Eqns. (32, 33), we now have a traveling
charge density wave. Thus this example exhibits its time-
dependence in a physically tangible form. The residual
continuous symmetry is reduced to a combined discrete
time-space-charge transformation. Although our con-
struction has been specific and opportunistic, it serves to
establish the existence of a universality class that, since
it is characterized by symmetry, should be robust. It is
noteworthy that cyclic motion of φ in internal space has
given rise to linear motion in physical space.

Comment: All of our constructions above have been
nonrelativistic. In a relativistic theory there are relations
among the coefficients of time and space gradient terms.
The relativistic quartic term L ∝ ((∂0φ)2−(∇φ)2)2 leads
to an energy that is unbounded below, for large gradi-
ents of one kind or another. But use of a sextic en-
ables positive energy. Indeed, the energy function for
((∂0φ)2 − (∇φ)2)n is

((2n− 1)(∂0φ)2 + (∇φ)2)((∂0φ)2 − (∇φ)2)n−1. (34)

For n odd this is semi-positive definite, with a zero at
(∂0φ)2 = (∇φ)2 unless n = 1. For n even it has no
definite sign. Bounded energy requires that the leading
term has odd n and a positive coefficient, and that the
coefficient of the n = 1 term is non-negative. This con-
sideration might help to constrain the models of [2] [3].
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